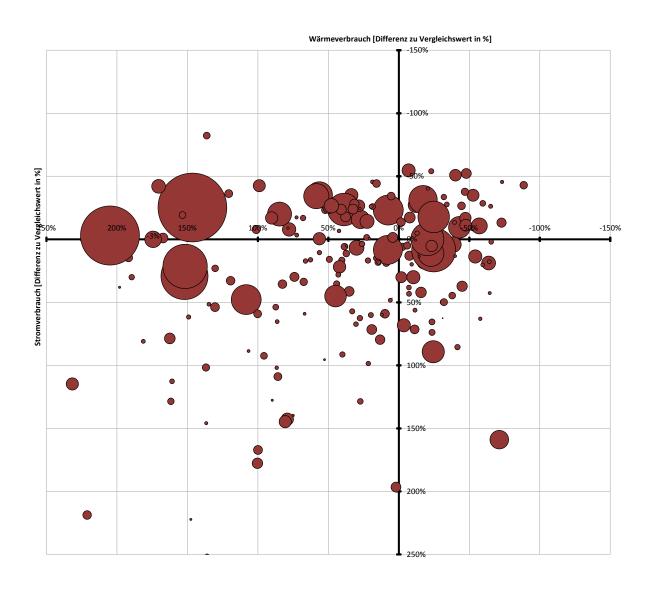
Bestandsaufnahme und Energieeffizienz-Potenzialanalyse für die landeseigenen Gebäude des Freistaats Thüringen

Dirk Daube

Schriftenreihe der Professur Betriebswirtschaftslehre im Bauwesen


herausgegeben von Univ.-Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Hans Wilhelm Alfen

Kooperationsvereinbarung

"Nachwuchsförderung Gebäude-Energieeffizienz in Thüringen (NaGET)"

Bestandsaufnahme und Energieeffizienz-Potenzialanalyse für die landeseigenen Gebäude des Freistaats Thüringen

Weimar, im Mai 2013

Impressum

Schriftenreihe der Professur Betriebswirtschaftslehre im Bauwesen

Herausgeber:

© Bauhaus-Universität Weimar Fakultät Bauingenieurwesen Professur Betriebswirtschaftslehre im Bauwesen Univ.-Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Hans Wilhelm Alfen Marienstraße 7A D-99423 Weimar

Autor:

Dr.-Ing. Dirk Daube

Bezugsmöglichkeit:

Verlag der Bauhaus-Universität Weimar

Fax: 03643/581156

E-Mail: verlag@uni-weimar.de

Druck:

Docupoint Magdeburg GmbH

Umschlaggestaltung:

Christian Mohr

ISBN 978-3-86068-497-9

Diese Veröffentlichung steht online als Volltext im Publikationsportal der Bauhaus-Universität Weimar unter folgender URL zur Verfügung:

http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20130530-19412

"Nachwuchsförderung Gebäude-Energieeffizienz in Thüringen (NaGET)"

Bericht zur Bestandsaufnahme und Energieeffizienz-Potenzialanalyse für die Gebäude des Freistaats Thüringen

Erarbeitet im Rahmen der Kooperationsvereinbarung vom 8. Februar 2011 zwischen der Bauhaus-Universität-Weimar und dem Thüringer Ministerium für Bau, Landesentwicklung und Verkehr

Autor:

Dr.-Ing. Dirk Daube Bauhaus-Universität Weimar Professur Betriebswirtschaftslehre im Bauwesen Marienstraße 7A, 99423 Weimar

Tel.: 03643/584380

E-Mail: dirk.daube@uni-weimar.de

Durchführung und Koordination für den Kooperationspartner:

Dipl.-Ing. Matthias Schreiber

Thüringer Ministerium für Bau, Landesentwicklung und Verkehr

Abteilung 2, Referat 24

Werner-Seelenbinder-Straße 8, 99096 Erfurt

Tel.: 0361/3791245

E-Mail: Matthias.Schreiber@tmblv.thueringen.de

Unterstützung:

- Thüringer Liegenschaftsmanagement, Zentrale Betriebsüberwachung (ZBÜ)
- Landesamt für Bau und Verkehr, Abteilungen 1, 5 und 6
- Universität Erfurt, Innere Verwaltung
- Technische Universität Ilmenau, Dezernat Gebäude und Technik
- Friedrich Schiller Universität Jena, Dezernat Liegenschaften und Technik
- Bauhaus-Universität Weimar, Servicezentrum Liegenschaften
- Fachhochschule Erfurt, Dezernat Bau und Liegenschaften
- Fachhochschule Jena, Referat Technik, Liegenschaften und Sicherheit
- Fachhochschule Nordhausen, Sachgebiet Bau / Liegenschaften / Sicherheit
- Fachhochschule Schmalkalden, Sachgebiet Liegenschaften / Bauangelegenheiten / Hochschulplanung

Vorwort

Klimawandel, steigende Energiepreise und begrenzte Rohstoffe sind globale Herausforderungen. Energieeinsparung und Klimagasreduktion sind daher zentrale energie- und klimapolitische Ziele der Thüringer Landesregierung.

Unsere Anstrengungen wollen wir künftig noch stärker auf Energieeffizienz und den planvollen Ausbau der erneuerbaren Energien lenken. Insbesondere im Gebäudebereich bestehen noch erhebliche Potenziale, Energie und Rohstoffe einzusparen und die für die Umwelt schädlichen Emissionen zu vermindern. Letztendlich sind alle Eigentümer, Betreiber und Nutzer von Immobilien sowie die am Bau beteiligten Akteure dazu aufgefordert, ihren Beitrag zur Reduzierung des vierzigprozentigen Anteils der Gebäude am Endenergieverbrauch in Deutschland zu leisten.

Gerade auch bei der Betreibung, Unterhaltung und Sanierung ihrer Gebäude ist die öffentliche Hand angehalten, vorbildlich zu handeln. Das bedeutet, sie muss planmäßig, auf Basis einer gesicherten Datengrundlage, fachlich fundiert und wissenschaftlich gestützt vorgehen. Diese Zielrichtung hat die Rahmenkooperation "Nachwuchsförderung Gebäude-Energieeffizienz in Thüringen (NaGET)", die im Jahr 2011 zwischen der Bauhaus-Universität Weimar und dem Thüringer Ministerium für Bau, Landesentwicklung und Verkehr geschlossen wurde.

Der vorliegende Abschlussbericht fasst die Ergebnisse unserer Kooperation mit der Bauhaus-Universität Weimar zusammen. Er erläutert die Methodik der energetischen Gebäudeanalyse und zeigt am Beispiel der Landesgebäude, wie ein größeres Gebäudeportfolio mit vertretbarem Aufwand energetisch bewertet, Gebäude mit einem hohen Einsparpotenzial ermittelt, Sanierungsmaßnahmen priorisiert und Umsetzungskonzepte entwickelt werden können.

Die durch NaGET erreichte neue energetische Transparenz unter den Landesgebäuden bildet eine wichtige Basis für unser weiteres Handeln. Im nächsten Schritt werden wir die Vorschläge und identifizierten Maßnahmen zur Steigerung der Energieeffizienz unserer Gebäude zielgerichtet und priorisiert umsetzen. Pilotwirkung hat die Universitätsbibliothek Erfurt, wo wir bereits in den nächsten Monaten die besonders wirtschaftlichen Energiesparmaßnahmen aus der Feinanalyse planen, realisieren und durch ein Energiecontrolling fortlaufend überwachen werden.

Mein besonderer Dank gilt an dieser Stelle der Bauhaus-Universität Weimar und im Besonderen der Professur Betriebswirtschaftslehre im Bauwesen für ihre qualifizierte Arbeit und fachkompetente Beratung. Hervorzuheben ist die gelungene Zusammenarbeit von Wissenschaftlern und Praktikern zur Lösung komplexer Aufgaben. Beispielhaft war das Heranführen von Studenten der Bauhaus-Universität Weimar an die Zukunftsaufgabe Energieeffizienz. Die Mitarbeit schärfte das Problembewusstsein der angehenden Baubetriebswirtschaftler(-innen) und erweiterte ihre Fachkenntnisse und -kompetenz auf dem Gebiet des Energiemanagements.

Wenn dieser Bericht zugleich private und öffentliche Eigentümer und Betreiber großer Gebäudeportfolien informieren und bei ihrer Arbeit unterstützen kann, wäre ein weiteres wichtiges Anliegen erreicht. Letztlich geht es darum, bestehende Ressourcen zu bündeln und verfügbares Wissen für alle Seiten gewinnbringend einzusetzen. In diesem Sinne wünsche ich der Broschüre eine weite Verbreitung.

Christian Carius Thüringer Minister für Bau, Landesentwicklung und Verkehr

Zusammenfassung

Der Freistaat Thüringen und die Bauhaus-Universität Weimar haben im Jahr 2011 eine Kooperation zur "Nachwuchsförderung Gebäude-Energieeffizienz in Thüringen (NaGET)" geschlossen. Ziel der Zusammenarbeit war die Erforschung der energetischen Qualität der Landesgebäude, um daraus Empfehlungen für eine Priorisierung energetischer Sanierungsmaßnahmen ableiten zu können. Im Ergebnis der Untersuchungen wird den Entscheidungsträgern mit der energetischen Potenzialanalyse ein Instrument zur Verfügung gestellt, dass diese bei der Vorauswahl von energetisch zu sanierenden Objekten gezielt unterstützt.

Untersuchungsgegenstand der Studie stellen die rund 1.700 Landesgebäude des Freistaates Thüringen dar, von denen 938 als energetisch relevant einzuschätzen sind. Zunächst eingegrenzt auf 270, wurden letztendlich 218 Gebäude für die energetische Potenzialanalyse ausgewählt, die alle die Anforderungen an die Datenqualität erfüllen. Der aufgebaute Datenbestand reicht hinsichtlich Umfang und Belastbarkeit deutlich über den Ausgangszustand hinaus.

Im Mittelpunkt der Untersuchungen steht die Auswertung der Verbrauchswerte für Wärme und Strom. Mit Hilfe verschiedener Analysemethoden wird rechnerisch als auch grafisch eruiert, welche Gebäude als Hochverbraucher energetisch auffällig sind. Es zeigt sich, dass die Auswertung gleichartiger Gebäude besonders geeignet ist, um auffällige Hochverbraucher zu identifizieren. Am Beispiel von Institutsgebäuden für Forschung und Lehre (BWZK 2200) und Bibliotheksgebäuden (BWZK-Kategorie 9130) wird dies veranschaulicht. Die Auswertung der Gebäude einer einzelnen Einrichtung erfolgt exemplarisch für die Universität Erfurt.

Es wird gezeigt, dass neben dem absoluten Verbrauch weitere Analysekriterien und der Vergleich mit Benchmarks zusätzliche Aufschlüsse bieten. Mit der Ermittlung des **Energieeffizienzpotenzials** wird eine Kenngröße vorgestellt, die einen aussagekräftigen Vergleich unter den Gebäuden erlaubt. Darauf aufbauend lässt sich eine Rangfolge von Gebäuden bilden, die zur Priorisierung von energetischen Sanierungsmaßnahmen genutzt werden kann.

Zur Durchführung einer energetischen Potenzialanalyse wird eine schrittweise Vorgehensweise vorgestellt, die von der Voranalyse über die Grobanalyse bis zur Feinanalyse eine zunehmende Detailierung vorsieht. Es wird gezeigt, dass damit ein Immobilienportfolio öffentlicher Gebäude, wie dies des Freistaates Thüringen, zielgerichtet und kostenschonend auf energetisch auffällige Gebäude hin untersucht werden kann. Am Beispiel der Universitätsbibliothek Erfurt wird verdeutlicht, wie bei einem energetisch auffälligen Objekt in einer detaillierten Untersuchung die Vorergebnisse geprüft, Ursachen für den erhöhten Energieverbrauch ermittelt und Vorschläge zur Verbesserung der energetischen Qualität erarbeitet werden können.

In einer **Hochrechnung** wurde mit Hilfe starker Vereinfachungen abgeschätzt, dass bei Gebäuden mit erhöhtem Heizwärmeverbrauch im Mittel eine Einsparung von 52 kWh/m²a möglich ist. Das Einsparpotenzial beim Stromverbrauch beträgt für ein Gebäude des Freistaates Thüringen durchschnittlich 44 kWh/m²a. Festzustellen ist, dass die Streuung der Energieeinsparpotenziale sehr hoch ist. Bei einzelnen Gebäuden ist eine deutliche Abweichung von den Durchschnittswerten nach oben bzw. unten zu verzeichnen. Es wird des Weiteren angenommen, dass im Idealfall 28 % der jährlichen Energiekosten des Freistaates i.H.v. rund 35 Mio. Euro eingespart werden können, wenn die betrachteten Gebäude so energetisch saniert werden, dass sie den Richtwerten für die Verbrauchshöhe entsprechen.

Gliederung

Zusa	mmer	ıfassung	J	VII
Abk	ürzung	sverzeic	chnis	XI
Abb	ildung	sverzeicl	hnis	XII
Forn	nelver	zeichnis		XIV
1.	Einfi	ihrung		1
	1.1	Koope	rationspartner	1
	1.2	Aufgal	benstellung	1
	1.3	Unters	suchungsgegenstand	2
	1.4	Metho	odik und Gang der Untersuchung	2
	1.5	Einord	Inung der Untersuchungen	3
2.	Date	nerfassı	ung	6
	2.1	Auswe	ertung der Energieausweise	6
	2.2	Zusam	nmenführung der Objektdaten	6
	2.3	Strukt	urierung der Datensätze	7
	2.4	Differe	enzierung nach Art der Verbrauchszählung	9
	2.5	Katego	orisierung der Datenqualität	11
3.	Date	naufber	reitung	14
	3.1	Witter	rungsbereinigung	14
	3.2	Zeitlicl	he Bereinigung	15
	3.3	Ermitt	lung der Energiebezugsfläche	15
	3.4	Ermitt	lung der Verbrauchskennwerte	16
	3.5	Ermitt	lung der Vergleichswerte nach BMVBS	17
	3.6	Ermitt	lung der Energieeffizienz-Klassen nach IEMB	19
	3.7	Ermitt	lung der Einsparpotenziale	21
4.	Date	nanalys	e und -auswertung	24
	4.1	Auswe	ertung für den Gesamtgebäudebestand	24
		4.1.1	Wärme- und Stromverbrauchs nach Energieeffizienz-Klassen	
		4.1.2	Wärme- und Stromverbrauch der Einzelobjekte auf Portfolioebene	
		4.1.3	Kombinierte Potenzialanalyse für Wärme und Strom	
		4.1.4	Potenzialanalyse unter Einbeziehung der Gebäudeflächen Potenzialanalyse unter Berücksichtigung der Kosten	

	4.2	Auswe	rtung für Gebäude eines Standortes am Beispiel der Universität Erfurt	36
		4.2.1	Überblick zu den untersuchten Thüringer Hochschulgebäuden	37
		4.2.2	Die Gebäude der Universität Erfurt	38
		4.2.3	Analyse des Wärme- und Stromverbrauchs	40
		4.2.4	Standortspezifische Priorisierung für die Universität Erfurt	41
	4.3	Auswe	rtung für BWZK-Gebäudegruppen am Beispiel 2200 und 9130	43
		4.3.1	Strukturierung des Gebäudebestandes nach BWZK-Gruppen	43
		4.3.2	Institutsgebäude für Forschung und Lehre (BWZK 2200)	44
		4.3.3	Bibliotheksgebäude (BWZK 9130)	46
		4.3.4	Weitere zur Untersuchung geeignete BWZK-Gruppen	48
	4.4	Feinan	alyse für Einzelobjekte am Beispiel der Universitätsbibliothek Erfurt	49
		4.4.1	Ausgangssituation der Universitätsbibliothek Erfurt	49
		4.4.2	Analyse des energetischen Ist-Zustandes	51
		4.4.3	Optimierungsvorschläge	52
		4.4.4	Handlungsempfehlungen	53
		4.4.5	Schlussfolgerungen	56
_				
5.			sblick	
	5.1	Übertr	agbarkeit auf gesamten Gebäudebestand	58
	5.2	Einbau	zusätzlicher Verbrauchszähler	59
	5.3	Zentral	les Datenmanagement	60
Anha	ng 1:	Gebäud	dedaten zu den vertiefend geprüften Hochschulgebäuden (Auszug)	61
	_			
Anha	ng 2:	Verbra	uchsdaten zu den vertiefend geprüften Hochschulgebäuden (Auszug)	66
Anha	ng 3:	Energie	eausweis für Nichtwohngebäude	69
Anha	ng 4:	Flächer	numrechnungsfaktoren zur Berechnung der Energiebezugsfläche	73
Anha	ng 5:	Mittely	werte EnEV 2007 und Vergleichswerte EnEV 2009 für den Heizenergie-	
,			uchskennwert und den Stromverbrauchskennwert für Gebäude, die nach	
		dem Ba	auwerkszuordnungskatalog kategorisiert sind	75
Anha	ng 6:	Sankey	r-Diagramme für Wärme	78
Anha	ng 7:	Übersid	cht vorgeschlagener Einzelmaßnahmen und deren Einordnung in die vier	
-	•		hmenpakete	79
Quell	enverz	eichnis		XV

Abkürzungsverzeichnis

BGF Brutto-Grundfläche

BMVBS Bundesministerium für Verkehr, Bau und Stadtentwicklung

BWZK Bauwerkszuordnungskatalog

DIN Deutsches Institut für Normung e.V.

EE Energieeffizienz

EMIS Energie- und Medien-Informationssystem

EnEV Energieeinsparverordnung

FM Facility Management

Geb. Gebäude

GEFMA German Facility Management Association

gif Gesellschaft für immobilienwirtschaftliche Forschung e.V.

GM Gebäudemanagement

IWU Institut Wohnen und Umwelt

KGR Kostengruppe

KGSt Kommunale Gemeinschaftsstelle für Verwaltungsmanagement

kWh Kilowattstunden

LS/LG Liegenschaft

MWh Megawattstunden

NaGET Nachwuchsförderung Gebäude-Energieeffizienz in Thüringen

NGF Netto-Grundfläche

Nr. Nummer

ÖH Öffentliche Hand

THÜLIMA Thüringer Liegenschaftsmanagement

TLBV Thüringer Landesamt für Bau und Verkehr

TMBLV Thüringer Ministerium für Bau, Landesentwicklung und Verkehr

VDI Verein Deutscher Ingenieure e.V.

VZ Verbrauchszähler

ZBÜ Zentrale Betriebsüberwachungsstelle

Abbildungsverzeichnis

Abbildung 1:	Idealtypisches Vorgehen zur energetischen Analyse eines Immobilienportfolios	3
Abbildung 2:	Untersuchungsebenen	4
Abbildung 3:	Merkmale der Gebäude und genutzte Informationsquellen	8
Abbildung 4:	Beispielobjekt mit erhobenen Basisdaten.	9
Abbildung 5:	Kategorien der Belastbarkeit der Verbrauchsdaten.	10
Abbildung 6:	Kategorisierung der Belastbarkeit der Verbrauchsdaten.	11
Abbildung 7:	Prüfung von Vollständigkeit und Belastbarkeit der Daten.	12
Abbildung 8:	Kategorien der Datenqualität.	13
Abbildung 9:	Flächenumrechnungsfaktoren zur Berechnung zur Energiebezugsfläche (Ausschnitt)	16
Abbildung 10:	Begriffsübersicht	18
Abbildung 11:	Mittelwerte EnEV 2007 und Vergleichswerte EnEV 2009 für Gebäude, die nach dem Bauwerkszuordnungskatalog kategorisiert sind (Ausschnitt)	18
Abbildung 12:	Vergleichswerte für Heizwärme- und Stromverbrauch (Ausschnitt)	19
Abbildung 13:	Beispiel für Energieeffizienz-Klassen.	20
Abbildung 14:	Klassengrenzen für Heizwärmeverbrauch nach IEMB.	20
Abbildung 15:	Energieeffizienz-Klassen für Heizwärme- und Stromverbrauch (Ausschnitt)	21
Abbildung 16:	Ermittelte Energieeinsparpotenziale beim Wärmeverbrauch (Auszug).	22
Abbildung 17:	Ermittelte Kosteneinsparpotenziale bei Wärme- und Stromverbrauch (Auszug)	23
Abbildung 18:	Entwicklung des Wärme- und Stromverbrauchs für die Landesliegenschaften im Eigentum	
	des Freistaates Thüringen	24
Abbildung 19:	Verteilung der Energieeffizienz-Klassen für den untersuchten Gebäudebestand	25
Abbildung 20:	Gebäude mit der Energieeffizienz-Klasse G bei Wärme- und Stromverbrauch	26
	Portfolio-Auswertung für den Wärmeverbrauch.	
Abbildung 22:	Portfolio-Auswertung für den Stromverbrauch	28
	Verbrauchsorientierte Potenzialanalyse auf Portfolioebene (Ausschnitt).	29
Abbildung 24:	Verbrauchsorientierte Potenzialanalyse auf Portfolioebene mit Größenkriterium Energiebezugsfläche (NGF)	30
Abbildung 25:	Effizienzpotenziale für die relevanten der 218 untersuchten Landesgebäude	32
Abbildung 26:	Kosteneinsparpotenzial beim Wärmeverbrauch.	33
Abbildung 27:	Kosteneinsparpotenzial beim Stromverbrauch.	34
Abbildung 28:	Kosteneinsparpotenziale für vier ausgewählte Objekte	35
Abbildung 29:	Zusammensetzung der vertiefend untersuchten Hochschulgebäude	37
Abbildung 30:	Gebäudebestand der Thüringer Hochschulen mit einer BGF > 500 m².	37
Abbildung 31:	Datenqualität der vertiefend geprüften Hochschulgebäude.	38
Abbildung 32:	Daten zu den Gebäuden der Universität Erfurt.	39
Abbildung 33:	Entwicklung des Energieverbrauchs der Universität Erfurt	40
Abbildung 34:	Gebäude der Universität Erfurt mit Wärmeverbrauch	40
Abbildung 35:	Gebäude der Universität Erfurt mit Stromverbrauch.	41

Abbildung 36:	Rangfolge der Gebäude der Universität Erfurt nach Energieeinspar-Potenzial	42
Abbildung 37:	Übersicht über vorhandene BWZK-Gebäudegruppen.	43
Abbildung 38:	Heizwärmeverbrauch der Objekte BWZK 2200 im Vergleich.	44
Abbildung 39:	Stromverbrauch der Objekte BWZK 2200 im Vergleich	45
Abbildung 40:	Heizwärmeverbrauch der Objekte der BWZK 9130 im Vergleich	46
Abbildung 41:	Stromverbrauch der Objekte der BWZK 9130 im Vergleich.	47
Abbildung 42:	Verbrauchsorientierte Potenzialanalyse für BWZK 9130 (Bibliotheksgebäude) mit Größenkriterium Gesamtkosten pro Jahr	48
Abbildung 43:	Auffällige Gebäude als Ergebnis der Untersuchungen.	50
Abbildung 44:	Die Universitätsbibliothek Erfurt.	50
Abbildung 45:	Verbrauchswerte und Benchmarks für die Universitätsbibliothek Erfurt.	51
Abbildung 46:	Einsparungen der vier Maßnahmenpakete im Vergleich.	55
Abbildung 47:	Vergleich der Maßnahmenpakete.	56
Abbildung 48:	Wirtschaftlichkeit der vier Maßnahmenpakete im Vergleich	56
Abbildung 49:	Installation von Verbrauchszählern in Gebäuden der Bauhaus-Universität Weimar	59

Formelverzeichnis

Formel 1:	Witterungsbereinigter Energieverbrauchskennwert für Heizung für einen Zeitabschnitt	14
Formel 2:	Witterungsbereinigter Heizenergieverbrauchskennwert für Heizung und Warmwasser für einen Zeitabschnitt.	16
Formel 3:	Witterungsbereinigter Heizenergieverbrauchskennwert	
Formel 4:	Ermittlung des Energieeinsparpotenzials.	22
Formel 5:	Ermittlung des Kosteneinsparpotenzials.	23

1. Einführung

Mit der Idee, die landeseigenen Gebäude auf Optimierungspotenziale zu untersuchen, hat der Freistaat Thüringen eine Forschungskooperation mit der Bauhaus-Universität Weimar begründet, deren bisherige Ergebnisse in diesem Bericht vorgestellt werden. In diesem Kapitel wird zunächst auf die Ausgangslage, die Rahmenbedingungen und die Vorgehensweise der Untersuchung eingegangen.

1.1 Kooperationspartner

Die Untersuchungen und Auswertungen wurden durch die Bauhaus-Universität Weimar, vertreten durch die Professur Betriebswirtschaftslehre im Bauwesen, koordiniert und durchgeführt. Die Abstimmung auf Seiten des staatlichen Hochbaus leitete das Thüringer Ministerium für Bau, Landesentwicklung und Verkehr (TMBLV). Die Arbeiten wurden unterstützt durch Vertreter vom Thüringer Landesamt für Bau und Verkehr (TLBV) und dem Thüringer Liegenschaftsmanagement (THÜLIMA) sowie Beauftragte ausgewählter Liegenschaftsverwaltungen, insbesondere der Hochschulen. Nur durch den intensiven Austausch und die kooperative Zusammenarbeit der Partner konnten die vorgelegten Ergebnisse erzielt werden.

1.2 Aufgabenstellung

Am 8. Februar 2011 haben das TMBLV und die Bauhaus-Universität Weimar einen Rahmenkooperationsvertrag geschlossen. Dieser sieht vor, dass unter Leitung der Professur Betriebswirtschaftslehre im Bauwesen die Gebäude des Freistaats Thüringen hinsichtlich ihrer energetischen Qualität analysiert werden. In den durchgeführten Untersuchungen wurde das Energieeffizienz-Potenzial der Gebäude in zwei Stufen beleuchtet, um daraus Empfehlungen für eine **Priorisierung** von energetischen Verbesserungsmaßnahmen ableiten zu können.

Denn soll die Energieeffizienz eines Immobilienbestandes verbessert werden, sind die dafür i.d.R. begrenzten finanziellen Ressourcen gezielt einzusetzen. Dabei stellt sich die **Frage: Wo beginnen?** Oft ist die energetische Qualität im Detail nur von einzelnen Objekten, nicht aber bestandsübergreifend bekannt. Die Frage, bei welchen Gebäuden besonders dringender Handlungsbedarf besteht, ist dann kaum zu beantworten. Eine energetische Potenzialanalyse unterstützt durch eine Bestandsaufnahme des Portfolios und die Ableitbarkeit von Prioritäten dabei, eine Antwort auf diese Frage zu finden und damit Entscheidungen vorzubereiten.

Ausgangspunkt des Forschungsprojektes war die Feststellung, dass die Energiekosten eine immer wichtigere Kostenposition bei der Bewirtschaftung des umfangreichen landeseigenen Gebäudebestandes darstellen. Obwohl der spezifische Verbrauch teilweise sank, ist u.a. durch die stetige Steigerung der Energiepreise in den letzten Jahren ein Anstieg der Energiekosten zu verzeichnen. Um dieser Entwicklung entgegenzuwirken, sollen Optimierungsmaßnahmen eingeleitet und Hochverbraucher energetisch verbessert werden. Es besteht das Ziel, durch investive und nicht-investive energetische Optimierungsmaßnahmen mittelfristig den Haushalt zu entlasten und für andere bauliche Vorhaben frei zu machen.

In dem nun vorliegenden Bericht werden die durchgeführten Untersuchungsmaßnahmen skizziert und die erzielten **Ergebnisse** vorgestellt und eingeordnet. Stufe 1 umfasste ausgewählte Gebäude, für die bereits Energieausweise vorlagen, und war auf die Schaffung einer Datenbasis und erster Analysen auf Verbrauchsbasis ausgerichtet. In der anschließenden Stufe 2 wurden die Untersuchungen weiter vertieft und um eine Feinanalyse ergänzt. In einer ökonomischen Betrachtung wurden die kos-

tenmäßigen Einsparmöglichkeiten energetischer Sanierungen bewertet und für Priorisierungsvorschläge genutzt. Abschätzungen zu den Baukosten, die es aufzubringen gilt, um die zu erwartenden Einsparungen realisieren zu können, waren hingegen nicht Inhalt des Forschungsprojektes.

Im Rahmen der Kooperation wurde die Einbindung und Förderung des wissenschaftlichen Nachwuchses vereinbart. In diesem Zusammenhang haben Studenten der Bauhaus-Universität Weimar wissenschaftliche Abschlussarbeiten erstellt, die sich mit dem Gebäudebestand des Freistaates beschäftigen.

1.3 Untersuchungsgegenstand

Der Freistaat Thüringen verfügt insgesamt über rund 1.700 landeseigene Gebäude, wovon die 938 energetisch relevanten eine Netto-Grundfläche (NGF) von rd. 1,7 Mio. m² aufweisen. Der Gebäudebestand umfasst u.a. Hochschulgebäude, Polizeigebäude, Finanzämter, Gerichtsgebäude sowie ministeriale Verwaltungsgebäude. Die Untersuchung erstreckt sich nur auf die Liegenschaften, die bebaut sind und bei denen durch deren Nutzung ein Energiebedarf besteht. Unbebaute bzw. ungenutzte Liegenschaften wurden von den Betrachtungen ausgeschlossen.

Um die Untersuchungen zielgerichtet und zeitnah durchführen zu können, wurde eine weitere Eingrenzung vorgenommen. Es wurden nur jene Liegenschaften betrachtet, für die bereits in der Vergangenheit **Energieausweise** erstellt wurden, da hier von einer geeigneten Datengrundlage für die Untersuchungen ausgegangen werden konnte.

1.4 Methodik und Gang der Untersuchung

Die Untersuchungen stützen sich auf die relevanten gesetzlichen Vorgaben und Richtlinien. Insbesondere die **EnEV 2009** und die **VDI 3807** wurden den Arbeiten zugrunde gelegt, sodass sich die Ergebnisse belastbar, nachvollziehbar und vergleichbar gestalten. Zur Auswertung der ermittelten Messdaten wurden die Verbrauchswerte für Wärme, Strom und teilweise ergänzend auch Wasser den aktuellen **Vergleichswerten des BMVBS** gegenübergestellt. Diese sind in der "Bekanntmachung der Regeln für Energieverbrauchskennwerte und der Vergleichswerte im Nichtwohngebäudebestand" vom 30. Juli 2009 angegeben.¹ Im Einzelnen wurden in Anlehnung an die VDI 3807 und die Vorgaben des BMVBS im Rahmen der Untersuchung die folgenden **Schritte** durchgeführt:

- Erfassung der Verbrauchsdaten für Wärme, Strom (und Wasser)
- Witterungsbereinigung der Heizenergieverbrauchswerte
- Zeitliche Bereinigung
- Ermittlung der Energiebezugsfläche
- Ermittlung der Vergleichswerte für Wärme-, Strom- (und Wasser)verbrauch
- Vergleich der Verbrauchswerte mit Vergleichswerten (Benchmarks)
- Abschätzung des Energieeffizienz- bzw. Einsparpotenzials
- Schaffung einer Grundlage zur Ableitung von kriteriengestützten Prioritätenlisten

Zunächst wird im 2. Kapitel erläutert, wie bei der grundlegenden Bestandsaufnahme vorgegangen wurde. Danach wird im 3. Kapitel vorgestellt, wie die erhobenen Daten aufbereitet und auf Plausibili-

¹ Vgl. BMVBS (2009a).

tät geprüft wurden, bevor im 4. Kapitel die Auswertung der Daten durch die Gegenüberstellung mit relevanten Vergleichswerten erfolgt. Abschließend werden die Ergebnisse im 5. Kapitel gewürdigt.

1.5 Einordnung der Untersuchungen

Es wurde eine **verbrauchsorientierte Analyse** durchgeführt. Die konkreten baulichen und technischen Merkmale der Gebäude (wie Baujahr, k-Wert von Bauteilen, Art und Alter der Heizungsanlage, etc.) bleiben dabei im Gegensatz zum bedarfsorientierten Ansatz zunächst unberücksichtigt. Es wird mit konkreten Messdaten in Form der Verbrauchswerte gearbeitet, in denen alle vorliegenden Randbedingungen des Gebäudes (z.B. Nutzerverhalten, Nutzungshäufigkeit, Einstellung der Heizungsanlage etc.) abgebildet sind.² Die rechnerische Ermittlung von theoretischen Erwartungswerten entfällt.³ Zu beachten ist, dass die **Nutzeraspekte** einen wichtigen Einflussfaktor auf die Höhe des Energieverbrauchs darstellen. Durch den Einfluss des Nutzerverhaltens sind nur begrenzt Rückschlüsse auf die energetische Qualität der Gebäudehülle und -technik möglich.

Aufgrund des vergleichsweise geringen Erstellungsaufwandes sind Untersuchungen dieser Art besonders für Auswertungen auf übergeordneter Portfolioebene geeignet, von denen Hinweise zur Kanalisierung folgender Untersuchungen erwartet werden. Dementsprechend können die Ergebnisse als Ausgangspunkt für weitere detailliertere, bis hin zu objektspezifischen Analysen genutzt werden. Eine **schrittweise Vorgehensweise** mit zunehmendem Detailierungsgrad kann nach Abbildung 1 erfolgen. Auf diese Weise lässt sich der zeitliche und kostenmäßige Aufwand steuern. Je detaillierter die Untersuchung sein soll, desto geringer ist die betrachtete Anzahl an Gebäuden zu wählen.⁴

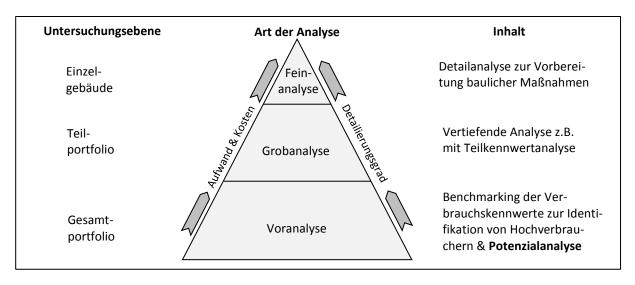


Abbildung 1: Idealtypisches Vorgehen zur energetischen Analyse eines Immobilienportfolios. Quelle: Eigene Darstellung.

Der idealtypischen Abstufung der Abbildung 1 entsprechend, steht am Anfang der energetischen Untersuchung eines Immobilienportfolios die "Voranalyse" des Bestandes. In diese Kategorie ist der

.

² Vgl. BMVBS (2009b), S. 36 ff.

³ Untersuchungen zeigen immer wieder große Abweichungen zwischen berechnetem Bedarf und gemessenem Verbrauch. Gerade beim Strom sind die in Forschungsprojekten ermittelten Unterschiede teilweise extrem hoch. Begründet wird dies damit, dass der Alltagsbetrieb von Gebäuden sich oftmals deutlich von dem ursprünglich geplanten unterscheidet. Es wird zudem festgestellt, dass dies mit zunehmender Komplexität eines Gebäudes umso mehr gilt. Vgl. weiterführend BMVBS (2009b), S. 37.

⁴ Vgl. weiterführend ähnliche Überlegungen in Muhmann (2009), S. 42 und IWU (2010), S. 13.

Großteil der durchgeführten Arbeiten einzuordnen. Hiermit lassen sich überblicksmäßige Einschätzungen auf der Portfolioebene vornehmen. Insbesondere können die Hochverbraucher ermittelt werden. Diese Untersuchungen lassen sich zur Aufstellung einer Rangfolge von Objekten nutzen, aus denen **Prioritäten** ableitbar sind.

Für die Gebäude mit überdurchschnittlichen Verbrauchswerten können im Rahmen einer anschließenden "Grobanalyse" detailliertere Untersuchungen unter Berücksichtigung ihrer Gebäudeeigenschaften und i.d.R. der Ergebnisse einer Vor-Ort-Begehung erfolgen. Hierfür bietet sich die Teilkennwertmethode an.⁵ Diese Methode beruht auf der DIN V 18599. Durch Vereinfachungen ermöglicht das Verfahren mit begrenztem Aufwand die energetische Analyse von Gebäuden und ist insbesondere für die Anwendung bei einer kleineren Anzahl von Gebäuden geeignet. Diese Verfahrensstufe wird in der vorliegenden Studie nicht betrachtet.

Sind Gebäude energetisch auffällig oder bereits für eine energetische Sanierung bestimmt, bedarf es einer "Feinanalyse", welche die dritte Analyseebene darstellt. Aufgrund der Detaillierung und dem hohen zeitlichen und finanziellen Aufwand ist diese Analysestufe nur für einzelne Gebäuden geeignet. Auf diese Weise erfolgte die Untersuchung der Universitätsbibliothek Erfurt.

Unter- suchungs- ebene	Detailierungs- grad	Untersuchungsrahmen	Beispiel	Anzahl Gebäude	Ab- schnitt
Ebene 1	Voranalyse	(Betrachtetes) Gesamtportfolio	Landeseigene Gebäude des Frei- staates Thüringen	938	4.1
Ebene 2a	Voranalyse	Teilportfolio – mehrere Ein- richtungen/ Liegenschafts- verwaltungen mit ähnlichen Gebäuden	chafts- Hochschulgebäude		-
Ebene 2b	Voranalyse	Teilportfolio – einzelne Ein- richtung/ Liegenschaftsver- waltung	Gebäude der Universität Erfurt	14	4.2
Ebene 2c	Voranalyse	Teilportfolio - BWZK-Gruppe	Bibliotheken (BWZK 9130)	6	4.3
Ebene 3	Feinanalyse	Einzelgebäude	Universitäts- bibliothek Erfurt	1	4.4

Abbildung 2: Untersuchungsebenen.

Quelle: Eigene Darstellung.

Entsprechend diesem Ansatz reicht der **Untersuchungsrahmen** bei den vorliegenden Untersuchungen von der Portfolioebene bis zur Ebene des Einzelgebäudes. Dazwischen bestehen vielfältige Möglichkeiten zur Betrachtung von ausgewählten **Teilportfolien**, die je nach Zielstellung gewählt werden können. Dazu werden gemäß Abbildung 2 verschiedene Ansätze aufgezeigt (siehe Ebene 2a bis 2c). Die Untersuchungen umfassen dabei stets ausgewählte Gebäude für die im Rahmen der Voranalyse eine detaillierte Verbrauchsanalyse durchgeführt wird.

⁵ Vgl. Lichtmeß (2010); VDI 3807 Blatt 4 (2008).

In der Tabelle werden die im Rahmen der vorliegenden Studie durchgeführten Arbeiten in die Strukturierung nach Abbildung 1 eingeordnet. Die einzelnen Untersuchungsebenen werden dazu mit erläuternden Angaben und Beispielen untersetzt.⁶

_

⁶ Die Angaben in der fünften Spalte zur Anzahl der Gebäude beziehen sich auf die im Rahmen der Untersuchung betrachteten Gebäude.

2. Datenerfassung

In diesem Kapitel wird ein Überblick über die verwendeten **Datenquellen** gegeben. Es wird beschrieben, welche **Merkmale** im Einzelnen erhoben wurden und wie bei deren Zusammenstellung und Abgleich vorgegangen wurde. Zudem wird auf die **Anforderungen an die Datenqualität** und deren Erfüllung eingegangen.

2.1 Auswertung der Energieausweise

Die **verbrauchsorientierten Energieausweise** und die dazugehörige Datentabelle bildeten die Hauptquelle dieser Untersuchung. Die meisten der vorhandenen Energieausweise wurden in den Jahren 2008 und 2009 erstellt. Es handelt sich dabei um öffentliche Gebäude mit einer Nutzfläche i.H.v. 1.000 m² oder mehr. Ab dem 1. Juli 2009 wurde für öffentliche Gebäude dieser Größe der Aushang eines verbrauchsorientierten Energieausweises verpflichtend.⁷

Die landeseigenen Gebäude, für die verbrauchsorientierte Energieausweise erstellt wurden, verteilen sich über die vier Regionalbereiche Erfurt, Jena, Gera und Suhl. Zu den Objekten wurden insbesondere die Wärme- und Stromverbräuche der Gebäude in den Jahren 2005 bis 2008 aufgenommen. Darüber hinaus sind in unterschiedlichem Umfang weitere relevante Informationen enthalten, wie z.B. Modernisierungsempfehlungen, das Baujahr der Heizungsanlage, der Energieträger oder bestehender Leerstand angegeben. In einem ersten Schritt wurden die Objektinformationen aus den vier Zuständigkeitsbereichen Erfurt, Jena, Gera und Suhl in einer **einheitlichen Struktur** zusammengeführt.

2.2 Zusammenführung der Objektdaten

Zusätzlich zu den Energieausweisen enthalten die EMIS-Datenbank und die LIDAB-Datenbank Gebäudeinformationen, die einbezogen werden konnten. Diese zusätzlichen Informationen wurden sukzessive in den Datenbestand eingearbeitet, wenn sie zu einer Vervollständigung und Verbesserung der Datenlage führten.

In der **EMIS-Datenbank** werden die Energieverbrauchsdaten für die Gebäude und Liegenschaften des Freistaates zentral geführt. Aus dem Datenbestand konnten für ausgewählte Liegenschaften Energieverbrauchsdaten ausgewiesen werden. Neben Angaben zum Verbrauch umfassten die Angaben auch Kosten für Wärme, Strom, Wasser und Abwasser der Jahre 2005 bis 2010.

Die LIDAB-Datenbank umfasst eine Übersicht zu den Liegenschaften des Freistaates Thüringen und den aufstehenden Gebäuden. In der LIDAB-Datenbank werden Liegenschafts- und Gebäudenummern, die Bezeichnung der Objekte und deren postalische Adressen sowie Angaben zur Gesamtfläche und bebauten Fläche der Liegenschaften, der Brutto-Grundfläche und der Netto-Grundfläche der aufstehenden Gebäude, der Bauzustandsklasse, dem Ausstattungsgrad, dem Baujahr und Sanierungsjahr sowie zum Denkmalschutz geführt.

6

Vgl. § 16 EnEV. Demnach sind Eigentümer bestimmter öffentlicher Gebäude zum Aushang eines Energieausweises verpflichtet, unabhängig davon, ob ein Anlass, wie Verkauf, Vermietung und Verpachtung oder Leasing vorliegt. Diese Pflicht gilt für Gebäude mit einer öffentlichen Nutzung, einer Nutzfläche ab 1.000 m² Nutzfläche und Publikumsverkehr. Liegt eines der Kriterien nicht vor und ist auch kein Anlass gegeben, ist die Erstellung eines Energieausweises für diese Gebäude nicht verpflichtend. Zukünftig wird mit der Nivellierung der EnEV entsprechend der EU-Gebäuderichtlinie der Aushang von Energieausweisen bereits ab 500 m² Nutzfläche vorgeschrieben sein.

Eine **Herausforderung** bei der Zusammenführung der einzelnen Objektdaten bestand darin, die einzelnen Systematiken der Nummerierung zu kombinieren und so die Informationen zu den Gebäuden zusammenzuführen. Zunächst wurde über die Liegenschaftsnummer in Verbindung mit der Gebäudenummer eine **Verknüpfung** zwischen den einzelnen Datensätzen hergestellt. Zusätzlich konnte die EMIS-Nummerierung zur Identifikation von Gebäuden herangezogen werden. Abschließend erfolgte eine Bereinigung um die Datensätze, die keine eindeutige Identifizierung der Objekte erlaubten.

Die Datenbanken wurden zudem genutzt, um die **Flächenangaben** für die untersuchten Gebäude abzugleichen. Hier galt es zu beachten, dass die Daten eine unterschiedliche Aktualität und Herkunft aufwiesen. Nach mehreren Schritten der Abstimmung zwischen beiden Datenbanken wurde entschieden, bei unterschiedlichen Angaben einheitlich die Flächenangaben der LIDAB-Datenbank zu verwenden, da diese Angaben größtenteils durch Pläne und Zeichnungen unterlegt waren. Die in Einzelfällen vorliegende unterschiedliche Nutzung von Flächen innerhalb eines Gebäudes (mehrere BWZK) wurde nicht hinterlegt. Als Vereinfachung wurde die überwiegende Nutzung für das gesamte Gebäude angenommen.⁸

Auch hinsichtlich des Energieverbrauchs sind in LIDAB und EMIS Angaben enthalten. Die Informationen wurden mit den Verbrauchsdaten der Energieausweise abgeglichen und zu deren Vervollständigung herangezogen. Als Hindernis erwies es sich dabei, dass die erfassten **Verbrauchsdaten** in der EMIS-Datenbank überwiegend nur liegenschaftsbezogen abgerufen werden können. Eine gebäudegenaue Erhebung erfolgt in EMIS derzeit noch nicht. Eine neue umfassendere CAFM-Datenbank unter Nutzung einer PLANON-Plattform befindet sich im Aufbau. Mit diesem Schritt ist u.a. auch geplant, die Erfassungs- und Auswertungsmöglichkeiten auf Gebäudeebene zu erweitern. Ein konkreter Zeitpunkt für den Abschluss der Aufbauarbeiten steht nach derzeitigem Informationsstand noch nicht fest.

Soweit möglich, wurden die **Liegenschaftsinformationen** für die gebäudebezogene Auswertung genutzt. Für den Fall, dass eine Liegenschaft nur ein Gebäude aufweist, wurde beispielsweise der liegenschaftsbezogene Verbrauchswert dem Gebäude direkt zugeordnet. Bei einer Liegenschaft, die nur aus Gebäuden gleicher Nutzung besteht, wurde der gebäudebezogene Verbrauch hilfsweise über die anteilige Fläche rechnerisch hergeleitet. Auf die verwendete Kategorisierung der Art der Verbrauchsmessung wird im Abschnitt 2.4 eingegangen.

2.3 Strukturierung der Datensätze

Aus den einzelnen Quellen standen jeweils unterschiedliche Informationen zu den Gebäuden bzw. Liegenschaften zur Verfügung. Zu welchen Merkmalen der Gebäude aus den einzelnen Datenbasen Informationen eingebracht wurden, zeigt die nachstehende Abbildung 3. Die Merkmale sind darin in alphabetischer Reihenfolge erfasst.

Aufgrund mehrerer gestaffelter Untersuchungsphasen wurden die Merkmale nicht in gleichem Umfang von den Partnern abgefragt. Daher ist nicht auszuschließen, dass zu einzelnen Merkmalen weitere Informationen vorliegen, die laut Tabelle nicht verwendet wurden.

⁸ Möglichkeiten zur Berücksichtigung sind in BMVBS (2009a), S. 18 beschrieben.

⁹ PLANON ist ein weltweit führender Anbieter von Computer Aided Facility Management Software (CAFM) für Anwendungen im Immobilienmanagement.

	Daten aus Energieausweisen	Daten aus EMIS-Datenbank	Daten aus LIDAB-Datenbank
Merkmal	(von TMBLV/ TLBV)	(von THÜLIMA)	(von TLBV)
Anzahl Gebäude einer Liegenschaft	Х	Х	X
Anzahl Nutzer	-	X	-
Ausstattung zeitgemäß (j/n)	-	-	X
Baujahr	-	X	X
Bauzustandsklasse	-	-	X
Bezeichnung Gebäude	Χ	X	X
Bezeichnung Liegenschaft	Χ	X	X
BWZK	Χ	X	-
Denkmalschutz (j/n)	-	-	X
Energiekosten Liegenschaft	-	X	-
Energieträger/ Heizmedium	Χ	X	X
Energieverbrauch (Gebäude)	Χ	-	-
Energieverbrauch Liegenschaft	-	X	-
Fläche Gebäude (BGF, NGF)	Χ	X	X
Fläche Liegenschaft	-	X	Х
Gebäude-Nr.	Χ	-	X
Gebäude-Nr. laut EMIS	-	X	-
Jahr der letzten Modernisierung	-	-	X
Landeseigentum (j/n)	Χ	-	X
Leerstand (j/n)	Χ	-	-
Liegenschafts-Nr.	Χ	X	X
Ort	Χ	X	X
PLZ	Χ	Х	-
Sanierungsjahr	-	-	Х
Straße	Χ	Χ	X
Verbrauchszähler gebäudebezogen (j/n)	Χ	-	-

Abbildung 3: Merkmale der Gebäude und genutzte Informationsquellen.

Die Zusammenführung der vorhandenen Informationen führte zu einer **Verbesserung der Untersuchungsbasis** und erhöhte die Möglichkeiten zur Auswertung. Einige spezifische Angaben wurden nur in einzelnen der einbezogenen Verzeichnisse geführt. Für Datensätze, die in mehreren Datenbanken geführt werden, wurde die Möglichkeit zum Abgleich der enthaltenen Informationen genutzt.

Des Weiteren wurden die Daten zur Vorbereitung der Datenauswertung einheitlich **strukturiert**. Dazu wurden die Datensätze in vier große Merkmalsbereiche unterteilt, die wiederum jeweils mit den verschiedenen Einzelmerkmalen der Abbildung 3 untersetzt sind. In der nachstehenden Übersicht sind die wichtigsten Merkmale anhand eines Beispiels entsprechend der vorgeschlagenen Strukturierung aufgeführt.

Nr.	Merkmal	Beispiel		
Allgemeine Angaben zur Identifizierung				
1	Laufende Gebäude-Nummer	173		
2	Liegenschafts-Nummer	11050		
3	Gebäude-Nummer der Liegenschaft	21		
Liege	nschaftsbezogene Daten			
4	Bezeichnung der Liegenschaft	Universität Erfurt		
5	Anzahl der Gebäude der Liegenschaft	21		

Gebä	Gebäudebezogene Daten					
6	Bezeichnung des Gebäudes	Mitarbeitergebäude 3				
7	PLZ	99089				
8	Ort	Erfurt				
9	Straße	Nordhäuserstraße 63				
10	Baujahr	1924				
11	Jahr der letzten Modernisierung	2008				
12	Netto-Grundfläche (NGF)	1.004 m ²				
13	Brutto-Grundfläche (BGF)	1.062 m ²				
14	BWZK-Gruppe	1.300 (Verwaltungsgebäude)				
15	Leerstand (ja (%)/ nein)	nein				
Anga	ben zum Energieverbrauch					
16	Energieträger/ Heizmedium	Fernwärme				
17	Baujahr der Heizungsanlage	n/a				
18	Heizwärmeverbrauch	2006: 68.670 kWh/a				
		2007:				
19	Stromverbrauch	2006: 36.969 kWh/a				
		2007:				
20	Wasserverbrauch	2006: 141 m ³				
		2007:				

Abbildung 4: Beispielobjekt mit erhobenen Basisdaten.

2.4 Differenzierung nach Art der Verbrauchszählung

Eine für die Einschätzung des energetischen Zustands zentrale Eingangsgröße stellen die Verbrauchsdaten dar. Eine hohe **Belastbarkeit** der Daten war daher besonders geboten. Um Rückschlüsse zur Aussagekraft der verwendeten Angaben zu ziehen und die verwendeten Informationen auch für spätere Untersuchungen nachvollziehbar zu gestalten, wurde die Art der Verbrauchsdatenermittlung erfasst. Angestrebt wurde die Verwendung gebäudegenau erfasster Verbrauchswerte.

Prinzipiell ist dabei die Art der Verbrauchserfassung für die Medien Wärme, Strom und Wasser zu unterscheiden, die für ein einzelnes Gebäude grundsätzlich auch unterschiedliche Ausprägungen aufweisen können. Eine besonders große Bedeutung hat die gebäudegenaue Erfassung des Wärmeverbrauchs, da dieser Wert stark von der Art der Nutzung abhängt. Mit dem Ziel, den Erhebungsaufwand zu begrenzen, wurde aufgrund ihrer Bedeutung die Wärmeverbrauchszählung in den Mittelpunkt gestellt. Zur Abschätzung der Auswirkungen dieser Vereinfachung wurden stichprobenartig bei Gebäuden alle drei Arten der Verbrauchszählung erfasst. Der Vergleich zeigte eine hohe Übereinstimmungsrate in der Qualität der Verbrauchszählung bei Wärme und Strom, 10 sodass ein geringer Einfluss auf das Ergebnis angenommen werden kann. In einer späteren Untersuchungsphase wäre es denkbar, eine detaillierte Erfassung zur Art der Verbrauchszählung zu ergänzen und damit die Belastbarkeit der jeweiligen Verbrauchsdaten noch weiter zu konkretisieren.

Zur Unterscheidung der Art der Verbrauchszählung wurde eine Systematik verwendet, die eine Einordnung der Verbrauchsdatenerfassung in 5 Kategorien von Verbrauchszählern (VZ) entsprechend Abbildung 5 vorsieht. Während die Kategorie VZ 1 für eine sehr gute Datenqualität steht, signalisieren höhere Nummern eine eingeschränkte (VZ 2, VZ 3) bzw. keine Verwendbarkeit (VZ 4, VZ 5) der Daten.

¹⁰ Insgesamt lag zum Wasserverbrauch nur eine geringe Datenmenge vor. Die diesbezügliche Art der Verbrauchszählung wurde daher nicht näher betrachtet.

Kategorie	Beschreibung
VZ 1	Gebäudegenaue Verbrauchszähler im Gebäude vorhanden.
VZ 2	Nur ein Gebäude mit Verbrauch: Kein gebäudegenauer Verbrauchszähler, aber gebäudegenauer Verbrauch erfassbar, da die restlichen Gebäude der Liegenschaft keinen Verbrauch aufweisen, z.B. Garagen oder die Liegenschaft besteht aus nur einem Gebäude.
VZ 3	Nur eine Nutzungsart der Liegenschaft: Kein gebäudegenauer Verbrauchszähler, aber über die Flächenanteile der Gebäude einer Liegenschaft ist eine Aufteilung auf die einzelnen Gebäude möglich, da die Gebäude die gleiche Nutzung aufweisen.
VZ 4	Ermittlung nicht bekannt: Kein gebäudegenauer Verbrauchszähler, aber dennoch liegt ein Verbrauchswert für das Gebäude vor, jedoch dessen Ermittlung ist nicht eindeutig nachvollziehbar (z.B. historische Angaben) oder es ist unklar, ob der Wert wirklich für ein Gebäude oder die gesamte Liegenschaft gilt.
VZ 5	Keine Angaben vorhanden: Eine Zuordnung ist nicht möglich, da keine genaueren Informationen vorliegen.

Abbildung 5: Kategorien der Belastbarkeit der Verbrauchsdaten.

Jedes der untersuchten Gebäude wurde in eine der Kategorien eingeordnet. Hierfür konnte auf Informationen zu eingebauten Verbrauchszählern in einzelnen Gebäuden zurückgegriffen werden (VZ 1). Lag diese Information nicht vor, konnten bei mehreren Objekten die Liegenschaftsverwaltungen vor Ort eine entsprechende Auskunft erteilen. Waren keine genauere Information verfügbar, wurde die VZ 5 angegeben. Auch Datensätze, deren Herkunft unbekannt und nicht nachprüfbar war, wurden dieser Kategorie zugewiesen. Erst diese strenge Einschränkung ermöglicht es, bei den entsprechend ausgewählten Datensätzen (VZ 1 bis VZ 3) von belastbaren Informationen zu sprechen.

Die **Auswertung der Gebäudedatensätze** ergibt das Bild der Abbildung 6. Bei 65 % der insgesamt 270 Gebäude sind Verbrauchszähler im Gebäude installiert. Bei diesen Gebäuden ist von einer entsprechend hohen Belastbarkeit der Verbrauchsdaten auszugehen. Die ebenfalls noch den belastbaren Daten zugerechneten Kategorien VZ 2 und VZ 3 sind mit je 8 % in geringerem Umfang gegeben. In die Kategorien VZ 4 mit wenig belastbaren Daten und VZ 5 mit nicht vorhandenen Daten sind zusammen 19 % der Datensätze einzuordnen.

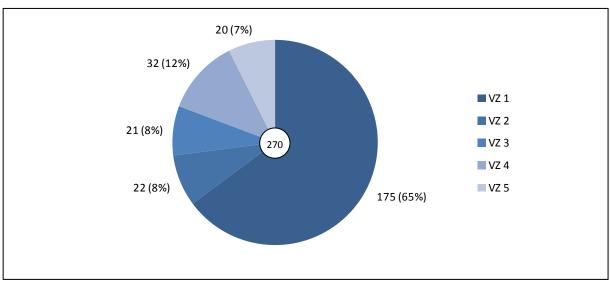


Abbildung 6: Kategorisierung der Belastbarkeit der Verbrauchsdaten.

In der **Zusammenfassung** sind demnach für 218 Gebäude bzw. 81 % aller untersuchten Gebäude belastbare Verbrauchsdaten (VZ 1-3) verfügbar. Es ist davon auszugehen, dass durch weitere detaillierte Nachforschungen die Anzahl der Datensätze mit belastbaren Verbrauchsdaten noch weiter erhöht werden kann. Auch der laufende Einbau neuer Zähler wird die Quote in Zukunft stetig weiter verbessern.¹¹

2.5 Kategorisierung der Datenqualität

Neben der Art der Verbrauchszählung können auch weitere Informationen über die Qualität der Eingangsdaten für die Auswertung nutzbar gemacht werden. Es bietet sich an, ein Mindestmaß an Datenqualität zu definieren, das Datensätze als Voraussetzung der Weiterverarbeitung aufweisen sollten. Unter dem Aspekt der Vollständigkeit der Datensätze wurden die folgenden Kriterien geprüft, die für die späteren Auswertungen und Berechnungen zwingend erforderlich sind:

- **Postleitzahl**: Ist bekannt, in welchem Postleitzahl-Gebiet das Gebäude liegt, um die Witterungsbereinigung der Heizenergieverbräuche durchführen zu können?
- **Flächenangabe**: Sind verwertbare Flächenangaben gegeben, um die Energiebezugsfläche ermitteln zu können?
- **Verbrauch**: Liegen für mindestens drei zusammenhängende Jahre Heizenergie- und Stromverbräuche vor?¹²

Die in dieser Form als Mindestinformation geforderten Daten liegen bei 218 der 270 betrachteten Gebäude vor (vgl. Abbildung 7, linke Seite). Da die abgefragten Mindestdaten zwingend erforderlich sind, um die weiteren Auswertungen durchführen zu können, werden nur die 218 Objekte in den weiteren Untersuchungsschritten berücksichtigt.

¹¹ Vgl. Abschnitt 5.2.

¹² Ggf. ergänzt um Daten zum Wasserverbrauch. Im Forschungsprojekt standen Heizwärme- und Stromverbräuche im Fokus.

In einem weiteren Untersuchungsschritt wurden zusätzliche Merkmale erhoben, um die **Belastbarkeit** der Gebäudeangaben einzuschätzen. Diese Angaben helfen dabei, die Einschätzung der Datenqualität weiter zu verfeinern. Sie werden aber nicht als Ausschlusskriterien verwendet.

- Einzelgebäude: Beziehen sich die zu verwendenden Angaben auf ein einzelnes Gebäude?
- Art der Verbrauchszählung: Liegt eine Verbrauchszählung entsprechend den definierten Kategorien VZ 1 bis VZ 3 vor?
- **Prüfung der Gebäudeverwaltung**: Ist eine Prüfung und ggf. Korrektur der Angaben durch die zuständige Liegenschaftsverwaltung vor Ort, z.B. einer Hochschule, vorgenommen wurden?

Die Auswertung zur Belastbarkeit der Daten zeigt, dass 114 Gebäude (42 %) die Anforderungen in vollem Maße erfüllen. Die anderen 156 Gebäude erfüllen eine oder mehrere der Bedingungen nicht (vgl. Abbildung 7, rechte Seite). Bei knapp der Hälfte der Datensätzen (74 Gebäude) fehlt allein die Prüfung durch die zuständigen Gebäudeverwaltungen. Bezogen auf die insgesamt 270 untersuchten Gebäude ist dies immerhin ein Anteil von 27 %. Insbesondere aus Zeit- und Aufwandsgründen war es im Rahmen dieser Untersuchung nicht möglich, zu allen Gebäuden die jeweiligen zuständigen Verwaltungsstellen zu konsultieren. Durch entsprechende Maßnahmen könnte der Anteil der als belastbar geltenden Datensätze kurzfristig deutlich erhöht werden.

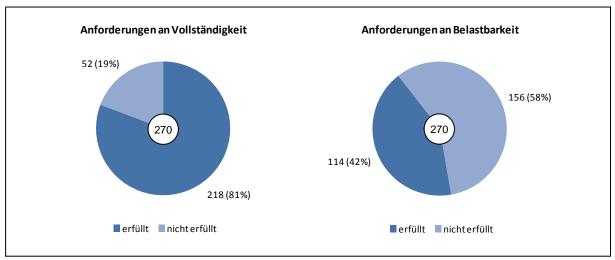


Abbildung 7: Prüfung von Vollständigkeit und Belastbarkeit der Daten.

Quelle: Eigene Darstellung.

Die Ergebnisse zur Vollständigkeit und Belastbarkeit der Datensätze wurden in einer Einschätzung zur Datenqualität zusammengeführt. Im Ergebnis werden drei Kategorien unterschieden. Die Gebäude der Kategorie 1 erfüllen alle Anforderungen an Vollständigkeit und Belastbarkeit, sodass aussagekräftige Ergebnisse ableitbar sind. Für die Gebäude der Kategorie 2 sind zwar ebenfalls Daten im Mindestumfang gegeben, sie haben aber den Belastungstest nicht vollständig bestanden. Schlussfolgerungen auf der Basis dieser Daten sind mit einer höheren Unsicherheit versehen. Gebäude, zu denen der geforderte Mindestumfang im Hinblick auf die geforderte Vollständigkeit nicht vorlag, wurden der Kategorie 3 zugeordnet. Die Verteilung der Gebäude auf diese drei gebildeten Kategorien der Datenqualität zeigt die Abbildung 8.

Kategorien			Anzahl		
der Daten-	Anforderungen an	Anforderungen an	Gebäude		Weitere
qualität	Vollständigkeit	Belastbarkeit	(∑ 270)	Anteil	Betrachtung
1	voll erfüllt	voll erfüllt	107	40 %	ja
2	voll erfüllt	nicht voll erfüllt	111	41 %	ja
3	nicht voll erfüllt	nicht voll erfüllt	52	19 %	Nein

Abbildung 8: Kategorien der Datenqualität.

In die weiteren Betrachtungen werden die 218 Datensätze der Kategorie 1 und 2 (81 %) mit vollständiger bzw. eingeschränkter Belastbarkeit der Eingangswerte einbezogen. Die Unterscheidung beider Kategorien ist bei den Objekten hinterlegt, um Rückschlüsse in Abhängigkeit der Datenqualität zu ermöglichen. Auf einen Ausweis der Datenqualität wird im Folgenden aber unter dem Aspekt der Übersichtlichkeit verzichtet. Die Gebäude der Kategorie 3, die keine ausreichende Datenbasis aufweisen, werden in den Auswertungen nicht berücksichtigt. Bei zukünftiger Verbesserung der Datenlage ist eine nachträgliche Einbeziehung dieser Gebäude in die Auswertungen möglich.

3. Datenaufbereitung

Um die verfügbaren Daten auswerten zu können, waren die Informationen aufzubereiten. Im Folgenden werden zunächst die einzelnen Schritte skizziert, die zur Ermittlung der Energieverbrauchskennwerte der einzelnen Gebäude erforderlich waren.

Um die ermittelten Energieverbrauchskennwerte beurteilen und mögliche Einsparungen abschätzen zu können, bedarf es im Weiteren einer Gegenüberstellung mit empfohlenen bzw. vorgegebenen Kenngrößen. Diese sog. Vergleichswerte stehen sowohl für den Heizenergie- als auch für den Strom- und Wasserverbrauch zur Verfügung. Der Schwerpunkt wurde in der vorliegenden Studie auf den Heiz- und Stromverbrauch gelegt. Der Wasserverbrauch wurde aufgrund einer diesbezüglich geringen erhobenen Datenmenge vernachlässigt, könnte aber als weiterer Schritt in Zukunft ergänzt werden.

Insgesamt wird in diesem Kapitel ein Überblick über die **Analysemethodik** gegeben, die der darauffolgenden Auswertung der Daten zugrunde gelegt wurde. Neben der Ermittlung der Verbrauchskennwerte und der Vergleichswerte schließt dies auch die Ermittlung des Energieeinsparpotenzials ein.

3.1 Witterungsbereinigung

Durch den starken Einfluss von außentemperaturbedingten Einflüssen ist deren Bereinigung zur Herstellung der Vergleichbarkeit der Heizenergieverbrauchswerte notwendig. Beim Stromverbrauch ist hingegen keine derartige Bereinigung erforderlich. Durch eine Witterungsbereinigung werden die Heizenergieverbrauchswerte verschiedener Jahre und in verschiedenen Regionen vergleichbar. Bei der Witterungsbereinigung der Heizenergieverbrauchswerte wurde entsprechend der Bekanntmachung des BMVBS vorgegangen.¹⁴ Die Umrechnung nach Formel 1 sowie das weitere Vorgehen sind Voraussetzung für die Nutzung der vom BMVBS herausgegebenen Vergleichswerte.¹⁵ Zu berücksichtigen ist, dass ergänzend zu der nachstehenden Ermittlung des Verbrauchskennwertes für die Heizung der Wärmebedarf für die zentrale Warmwasseraufbereitung separat zu berücksichtigen ist (vgl. Abschnitt 3.4).

$$e_{Vhb,12mth,i} = \frac{E_{Vh,12mth,i} \cdot f_{Klima,12mth,i}}{A_{NGF}} \tag{1}$$

Legende:

 $e_{Vhb,12mth,i} \qquad \text{Witterungsbereinigter Energieverbrauchskennwert für Hei-}\\$

zung für einen Zeitabschnitt i in kWh/(m²*a)

 ${\sf E}_{{\sf Vh,12mth,i}} \qquad {\sf Energiever brauch santeil} \ {\sf für \ Heizung \ in \ dem \ maßgeblichen}$

Zeitabschnitt i in kWh/a

 $\begin{array}{ll} A_{NGF} & Energiebezugsfläche in \, m^2 \\ f_{Klima,12mth,i} & Klimafaktor für den Zeitabschnitt i \\ i & Zählindex von 1 bis n, mit \, n \geq 3 \end{array}$

Formel 1: Witterungsbereinigter Energieverbrauchskennwert für Heizung für einen Zeitabschnitt.

Quelle: BMVBS (2009a), S. 8.

¹³ Vgl. AMEV (2010), S. 18 ff.

¹⁴ Vgl. BMVBS (2009a), S. 8.

¹⁵ Vgl. zur Energiebezugsfläche Abschnitt 3.3.

Entsprechend der Formel wurden die Wetterdaten des Deutschen Wetterdienstes (DWD) angesetzt. Der DWD stellt sog. Klimafaktoren bereit, die auch zur Erstellung von Energieausweisen verwendet werden. ¹⁶ Zur Ermittlung der jeweiligen Klimafaktoren für die einzelnen Objekte wurden die folgenden Eingangsgrößen berücksichtigt:

- **Postleitzahl**: zur Bestimmung des Ortes bzw. der Region und Zuordnung der dort von Wetterstationen gemessenen Witterungsbedingungen
- **Jahr**: um dem Verbrauch in den einzelnen Jahren die jeweils in diesem Jahr herrschenden Klimabedingungen zuordnen zu können
- **Bezugszeitraum**: um die Verbrauchsdaten für alle Objekte gleichermaßen für das Kalenderjahres von Januar bis Dezember angeben zu können

Für die Umrechnung wurde mit Hilfe eines Tabellenkalkulationsprogramms eine Übersicht erstellt, die jedem einzelnen Objekt entsprechend seinen Eingangsdaten die zugehörigen Klimafaktoren zuordnet und den Heizenergieverbrauch nach Klimabereinigung ausgibt.

3.2 Zeitliche Bereinigung

Die Verbrauchsdaten sind jeweils jahresweise anzugeben. Um den Vergleich zwischen mehreren Objekten zu ermöglichen, ist darauf zu achten, dass die Verbrauchserfassung an einem einheitlichen Stichtag erfolgt. Zu dem hier betrachteten Immobilienportfolio wurden alle Werte mit Stichtag zum 1. Januar angegeben, wodurch keine zusätzlichen Umrechnungen erforderlich wurden.

3.3 Ermittlung der Energiebezugsfläche

Eine weitere Voraussetzung für aussagekräftige Untersuchungsergebnisse ist die Verwendung einer einheitlichen Bezugsfläche. Als Bezugsfläche empfiehlt sich die Summe der beheizbaren Brutto-Grundflächen (BGF)¹⁷ bzw. Netto-Grundflächen (NGF) eines Gebäudes. Aufgrund der größeren Verbreitung und der Empfehlung des BMVBS wird die NGF als Bezugsfläche verwendet.¹⁸

Lagen Angaben nur als Brutto-Grundfläche (BGF), Nutzfläche (NF) oder Hauptnutzfläche (HNF) vor, erfolgte entsprechend den Vorgaben des BMVBS eine Umrechnung. In der nachstehenden Tabelle wird in einem Ausschnitt die Ermittlung der Energiebezugsfläche mittels definierter Umrechnungsfaktoren in Abhängigkeit der vorliegenden BWZK-Gruppe gezeigt. Die vollständige Tabelle ist im Anhang 4 einzusehen.

-

¹⁶ Vgl. die vom Deutschen Wetterdienst (DWD) herausgegebenen Klimafaktoren unter www.dwd.de/klimafaktoren.

¹⁷ Vgl. VDI 3807 Blatt 1 (2007), S. 16.

¹⁸ Vgl. BMVBS (2009a), S. 20.

7"			Faktoren für die Umrechnung zur				
Ziffer nach	Gebäudekategorie	Energiebezugsfläche A _{NGF}					
BW <i>Z</i> K	Control of the Contro		NF	NGF	BGF		
1100	Parlamentsgebäude	1,97	1,54	1	0,85		
1200	Gerichtsgebäude	1,68	1,41	1	0,83		
1300	Verwaltungsgebäude	1,71	1,4	1	0,85		
1312	Ämtergebäude	1,64	1,38	1	0,84		
1315	Finanzämter	1,62	1,41	1	0,85		
1320	Verwaltungsgebäude mit höherer technischer Ausstattung	1,75	1,33	1	0,86		
1340	Polizeidienstgebäude	1,78	1,38	1	0,84		
1342	Polizeiinspektionen, Kommissariate, Kriminalämter, Reviere	1,76	1,4	1	0,83		
1350	Rechenzentren	1,73	1,54	1	0,88		
2000	Gebäude für wissenschaftliche Lehre	1,74	1,56	1	0,88		
2100	Hörsaalgebäude	1,91	1,64	1	0,88		
2200	Institutsgebäude für Lehre und Forschung	1,7	1,54	1	0,89		

Abbildung 9: Flächenumrechnungsfaktoren zur Berechnung zur Energiebezugsfläche (Ausschnitt)

Quelle: Eigene Darstellung unter Verwendung BMVBS (2009a), S. 20 ff.

3.4 Ermittlung der Verbrauchskennwerte

Unter dem Oberbegriff der Verbrauchskennwerte werden die flächenbezogenen Kennwerte eines Gebäudes zusammengefasst. Es werden Verbrauchskennwerte für die Heizenergie, die elektrische Energie (Strom) und den Wasserverbrauch eines Jahres unterschieden. Bezugsgröße ist in der Regel die Energiebezugsfläche.

Speziell für die Ermittlung des Verbrauchskennwertes für die Heizenergie ist zwischen der Heizung und der zentralen Warmwasseraufbereitung zu unterscheiden. Vereinfachend wurde für den Anteil des Wärmeverbrauchs für Warmwasser ein Pauschalwert von 5 % des gemessenen jährlichen Energieverbrauchs für Heizung und zentrale Warmwasseraufbereitung eines Gebäudes angesetzt. ¹⁹ Für einen einzelnen Zeitabschnitt ergibt sich der Heizenergieverbrauchskennwert wie folgt:

$$e_{Vb,12mth,i} = e_{Vhb,12mth,i} + \frac{E_{VWW,12mth,i}}{A_{NGF}}$$
 (2)

Legende:

e_{Vb,12mth,i}

Witterungsbereinigter Heizenergieverbrauchskennwert für Heizung und zentrale Warmwasserbereitung in dem maßgebenden Zeitabschnitt i in kWh/(m²*a)

e_{Vhb,12mth,i}

Witterungsbereinigter Energieverbrauchskennwert für Heizung in dem maßgeblichen Zeitabschnitt i in kWh/(m²*a)

E_{VWW,12mth,i}

Energieverbrauchsanteil für zentrale Warmwasserbereitung in dem maßgeblichen Zeitabschnitt i in kWh/a

A_{NGF}

Energiebezugsfläche in m²

i Zählindex von 1 bis n

Formel 2: Witterungsbereinigter Heizenergieverbrauchskennwert für Heizung und Warmwasser für einen Zeitabschnitt.

Quelle: BMVBS (2009a), S. 8.

_

¹⁹ Vgl. die gleichlautende Empfehlung in BMBVS (2009a), S. 5.

Die Verbrauchswerte eines Gebäudes unterliegen verschiedenen Einflüssen. Möglichen Verfälschungen durch Witterungseinflüsse kann durch die Berücksichtigung der Klimafaktoren entgegengetreten werden.²⁰ Doch eine Vielzahl weiterer Einflussfaktoren kann nicht auf diese Weise erfasst werden. Als weitere wesentliche Einflüsse sind z.B. das Nutzerverhalten, die Nutzungsintensität, die technische Ausstattung oder der bauliche Wärmeschutz zu nennen. Schwankungen der Verbrauchswerte unabhängig vom Wetter sind daher zwangsläufig vorhanden.

Um dergleichen atypische jährliche Schwankungen auszugleichen bzw. zumindest abzumildern, geht der Verbrauchswert in den Verbrauchskennwert als Durchschnittswert ein. Typischerweise werden die Verbrauchsdaten aus den letzten drei Jahren entsprechend gemittelt.²¹ Durch die Gegenüberstellung des arithmetischen Mittels des Verbrauchs und der Bezugsfläche errechnet sich der Verbrauchskennwert gleichermaßen für Heizwärme, Strom und Wasser eines Gebäudes.

Der witterungsbereinigte Heizenergieverbrauchskennwert ergibt sich demnach gemäß Formel 3 als Durchschnittswert der witterungsbereinigten Heizenergieverbrauchskennwerte der Zeitabschnitte. Für die Ermittlung des Stromverbrauchskennwertes wird gleichermaßen vorgegangen, wobei auf die Witterungsbereinigung mit dem Klimafaktor zu verzichten ist.

$$e_{Vb} = \frac{\sum_{i=1}^{n} e_{Vb,12mth,i}}{n}$$
 (3)

Legende:

Witterungsbereinigter Heizenergieverbrauchskennwert in e_{Vb}

kWh/(m2*a)

Witterungsbereinigter Heizenergieverbrauchskennwert für $e_{Vb,12mth,i}$

Heizung und zentrale Warmwasseraufbereitung in dem maß-

geblichen Zeitabschnitt i in kWh/(m2*a)

Anzahl der Zeitabschnitte; mit n ≥ 3 n

Zählindex von 1 bis n

Formel 3: Witterungsbereinigter Heizenergieverbrauchskennwert.

Quelle: BMVBS (2009a), S. 8.

Ermittlung der Vergleichswerte nach BMVBS 3.5

Als Benchmark wurden den ermittelten Verbrauchsdaten die durch das BMVBS veröffentlichten Vergleichswerte gegenübergestellt. Es wurden die diesbezüglich 2007 und 2009 erschienenen Veröffentlichungen herangezogen. Bei den ausgewiesenen Kennwerten wird zwischen Mittel- und Vergleichswerten unterschieden. Beide Kennwerte dienen als Vergleichsmaßstab für die gemessenen Verbrauchskennwerte öffentlicher Gebäude. Damit lässt sich der Energieverbrauch eines Gebäudes in einer ersten Indikation einschätzen. Gegenüber der letzten Version der Bekanntmachung aus dem Jahr 2007 zeigt sich eine deutliche Verschärfung der Anforderungen.²²

²⁰ Vgl. Abschnitt 3.

²¹ Vgl. BMVBS (2009a), S. 7: Drei Jahre sind die Mindestvorgabe. Es kann auch ein längerer Zeitraum gewählt

²² Darüber hinaus ist die Nutzung weiterer spezifischer Kennwerte für Gebäudearten aus der Fachliteratur möglich, Vorschläge hierfür sind in AMEV (2010), S. 19 enthalten. Auch in der VDI 3807 Blatt 2 sind entsprechende Benchmarks enthalten, die allerdings aus dem Jahr 1998 stammen.

Begriff	Beschreibung
Verbrauchskennwert	Messwert (Kennwert für ein Gebäude auf das Basis von messtechnisch erfassten Verbrauchsdaten)
Mittelwert	Benchmark (Erfahrungswert auf der Grundlage der EnEV 2007)
Vergleichswert	Benchmark (Zielgröße bzw. Richtwert nach EnEV 2009)

Abbildung 10: Begriffsübersicht.

Quelle: Eigene Darstellung unter Verwendung von BMVBS (2009a).

Die vom BMVBS veröffentlichten **Mittelwerte** stellen Erfahrungswerte dar, die auf der Grundlage der Auswertung einer Vielzahl von Projekten über mehrere Jahre abgeleitet wurden (vgl. Abbildung 10). Sie geben einen Durchschnittswert für die jeweilige Gebäudeart wieder. Die Fortschreibung der Datenbasis wird auch daran deutlich, dass die Angaben von den ursprünglichen Vorgaben aus dem Jahr 2007 abweichen.²³ Als Vergleichswerte sind die Angaben bei der Ausstellung von Energieausweisen zu verwenden, wenn der Energieverbrauch nach EnEV 2007 ermittelt wird.²⁴

Im Gegensatz dazu stellen die **Vergleichswerte** nach EnEV 2009 vom Gesetzgeber vorgegebene Zielgrößen dar, die als Richtwerte fungieren. Diese Vorgabe gilt als erreichbar, wenn Gebäude einer umfangreichen Sanierungsmaßnahme unterzogen oder erst vor wenigen Jahren errichtet wurden. Wird der vorgegebene Wert sogar übertroffen, weist das entsprechende Gebäude einen überdurchschnittlich guten Verbrauchswert auf.

Ziffer		Gebäude- größe (Netto-	Mittel = Vergleid nach Enl	chswerte	Vergleichswerte nach EnEV 2009				
nach BWZK	Gebäudekategorie	grundflä- che)	Heizung und Warmwasser	Strom	Heizung und Warmwasser	Strom			
		[m ²]	[kWh/(m	² NGF· a)]	$[kWh/(m^2_{NGF} a)]$				
1	2	3	4	5	6	7			
1100	Parlamentsgebäude	beliebig	100	55	70	40			
1200	Gerichtsgebäude	≤ 3.500	125	25	90	20			
1200	Genenisgebaude	> 3.500	100	35	70	25			
	Verwaltungsgebäude,	≤ 3.500	115	30	80	20			
1300	normale technische Ausstattung (ohne BWZK Nr. 1311, 1320, 1340 und 1350)	> 3.500	120	45	85	30			

Abbildung 11: Mittelwerte EnEV 2007 und Vergleichswerte EnEV 2009 für Gebäude, die nach dem Bauwerkszuordnungskatalog kategorisiert sind (Ausschnitt).

Quelle: BMVBS (2009a), S. 22 ff.

Da der Energieverbrauch in hohem Maße von der **Art der Nutzung** und der Größe der **Gesamtfläche** eines Gebäudes bestimmt wird, sind die Kennwerte in Abhängigkeit dieser beiden Größen angegeben. Die Strukturierung erfolgt entsprechend den Gebäudekategorien des Bauwerkszuordnungskata-

²³ Vgl. BMVBS (2007), S. 14 ff.

²⁴ Vgl. BMVBS (2009a), S. 22.

logs (BWZK). Für jedes Gebäude ist die zutreffende BWZK-Kategorie und die Flächengröße (< / > 3.500 m² NGF) auszuwählen und aus Abbildung 11 der dafür geltende Mittel- sowie Vergleichswert abzulesen. Die vollständige Tabelle ist im Anhang 5 abgebildet.

In Abbildung 12 sind die Ergebnisse dieses Untersuchungsschrittes für eine Auswahl von Gebäuden dargestellt. Für jedes der Gebäude ist einzeln angegeben, ob die zugeordneten Mittel- und Vergleichswerte erfüllt wurden oder nicht. Die vollständige Liste umfasst alle der 270 untersuchten Gebäude, für welche die erforderlichen Daten vorlagen. Objekte mit einer unvollständigen Datenbasis können nach Ergänzung der benötigen Informationen mit geringem zusätzlichem Aufwand in die Auswertungen einbezogen werden.

	Energie-		Verbrauch Wärme					rk Wärme BS (2009a)	Mittelwe ung & W 2007) [k		Vergleichswert Hei ung & WW (EnEV 2009) [kWh/m²a)	
lfdNr.	BWZK	bezugs- fläche		3-Jahres-	Verbrauchs-		Mittelwert	Vergleichswert				
				Wert [kWh/a]	kennwert [kWh/m²a]		EnEV 2007	EnEV 2009	<= 3.500	>= 3.500	<= 3.500	>= 3.500
				[KVVII/a]	[KVVII/III-a]		[kWh/m²a]	[kWh/m²a]	m²	m²	m²	m²
~	~	~	~	~	~	₩.	~	~		~	▼	-
1	6300	4.947		632.813	128		erfüllt	nicht e.	150	150	105	105
2	1350	1.362		308.742	227		nicht e.	nicht e.	125	125	90	90
3	2210	2.620		538.731	206		nicht e.	nicht e.	125	120	90	85
4	2100	2.255		463.808	206		nicht e.	nicht e.	115	115	90	90
5	2200	3.157		692.434	219		nicht e.	nicht e.	150	150	105	105
6	2000	3.691		272.141	74		erfüllt	erfüllt	115	120	80	85
7	2200	1.519		187.828	124		erfüllt	nicht e.	150	150	105	105
8	2210	5.256		507.600	97		erfüllt	nicht e.	125	120	90	85
9	9130	18.622		1.322.616	71		erfüllt	nicht e.	80	80	55	55

Abbildung 12: Vergleichswerte für Heizwärme- und Stromverbrauch (Ausschnitt).

Quelle: Eigene Darstellung.

3.6 Ermittlung der Energieeffizienz-Klassen nach IEMB

Mit Hilfe der vom BMVBS veröffentlichten Kennzahlen kann eingeschätzt werden, ob der bei einem Nichtwohngebäude gemessene Energieverbrauch über bzw. unter dem Mittelwert liegt und ob der Vergleichswert erreicht wird. Eine genauere Einschätzung ist nicht möglich. Auch auf einem verbrauchsorientierten Energieausweis werden nur der Verbrauchskennwert und der zugehörige Vergleichswert zur Anzeige der Energieeffizienz verwendet. Auf der **Farbskala** des Bandtachos, die von grün bis rot reicht, ist das Ablesen der konkreten Energieeffizienz kaum möglich.²⁵

Eine Möglichkeit für eine übersichtlichere und aussagekräftigere Angabe zur Energieeffizienz stellt die Einstufung in **Energieeffizienz-Klassen** dar. Dieses Konzept ist in der europäischen Normung weit verbreitet.²⁶ Bei Haushaltsgeräten ist das Klassenlabel ein eingeführter und bewährter Standard. Daraus ist die Methodik auch den Bürgern bekannt, welche die Zielgruppe der Aushangpflicht bei öffentlichen Gebäuden darstellen. Mit dem Klassenlabel ist die Energieeffizienz deutlich leichter zu kommunizieren: So ist z.B. die Einordnung als "Klasse B" besser verständlich als die Anordnung "ziemlich weit links auf dem Bandtacho". Das Beispiel der Abbildung 13 zeigt die Klassengrenzen für die BWZK-Gruppe "1310 Verwaltungsgebäude mit normaler technischer Ausstattung". Die Kompatibilität zu den Vorgaben des BMVBS ist durch die Verwendung der Netto-Grundfläche (NGF) gegeben.

_

 $^{^{25}}$ Vgl. den Bandtacho eines verbrauchsorientierten Energieausweises für NGW in Anhang 3.

²⁶ Vgl. Deutscher Städtetag (2007), S. 4.

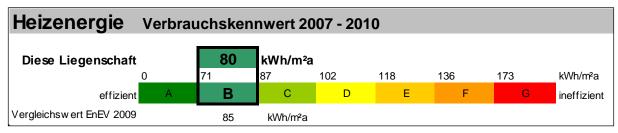


Abbildung 13: Beispiel für Energieeffizienz-Klassen.

Quelle: Lindner (2006); Frankfurt a.M. (2010).

Daher wurden neben den Mittel- und Vergleichswerten des BMVBS zusätzlich die Erfahrungswerte des Instituts für Erhaltung und Modernisierung von Bauwerken e.V. (IEMB) zum Vergleich herangezogen.²⁷ Bis Ende 2006 hat das IEMB im Auftrag des BMBVS **13.600 Datensätze aus Bund, Ländern und Kommunen** ausgewertet.²⁸ Eine Aktualisierung der Datenlage über diesen Stichtag hinaus ist zum Zeitpunkt der Untersuchung nicht bekannt, sodass auf dieser Datenbasis aufgesetzt wurde.²⁹

Die Daten wurden statistisch aufbereitet und so verteilt, dass in jeder Klasse die gleiche Anzahl an Objekten enthalten ist. Dadurch ergibt sich eine unterschiedliche "Bandbreite" der Segmente der Gesamtskala, die als "Klassen" bezeichnet werden. Bezogen auf die oben stehende Abbildung ist die Bandbreite der Klasse "B" mit 71 bis 86 KWh/m²a z.B. deutlich geringer als Klasse "A" mit 1 bis 70 KWh/m²a.

		Dat	enque	lle: Dat	ensam 09.11	mlung (.2006	des IEM	IB Stan	ıd:	20	07	20	09
BZK	Bauwerkszuordnung	Anzahl		Un	ergren	zen de	r Klass	en		Vergleichs	werte EnEV	Vergleichswerte EnEV	
		Werte			(k	(kWh/m²a)	(kWh/m²a)	(kWh/m²a)	(kWh/m²a)				
			Α	В	С	D	E	F	G	<=3.500 m ²	>3.500 m ²	<=3.500 m ²	>3.500 m ²
1100	Parlamentsgebäude	27	0	87	99	104	121	124	138	111	111	70	70
1200	Gerichtsgebäude	688	0	73	89	104	116	133	164	117	100	90	70
1300	Verwaltungsgebäude	4.034	0	74	91	109	126	149	190	134	115	80	85
1310	Verwaltungsgeb. m. norm. techn. Ausst.	2.116	0	71	87	102	118	136	173	125	110	80	85
1313	Rathäuser	49	0	81	105	136	146	181	242	175	150	80	85
1320	Verwaltungsgeb. m. höh. techn. Ausst.	155	0	80	91	108	121	146	183	130	130	85	85
1340	Polizeidienstgebäude	1.424	0	79	102	119	139	163	210	148	125	90	90
1350	Rechenzentren	10	0	37	92	94	109	118	182	101	125	90	90
2000	Geb. f. wiss. Lehre u. Forschung	1.008	0	77	102	122	145	177	241	162	145	90	90
2100	Hörsaalgebäude	41	0	68	96	112	136	160	213	152	152	90	90
2200	Institutsgebäude f. Lehre u. Forsch.	600	0	78	102	125	143	176	252	165	140	105	105
2300	Institutsgeb. f. Forsch. u. Unters.	153	0	92	129	154	178	223	299	192	205	135	135
3200	Krankenhäuser für Akutkranke	32	0	126	180	215	238	303	341	236	236	250	250
3300	Sonderkrankenhäuser (z.B. Sucht)	30	0	201	256	277	314	345	389	294	294	135	135
3400	Pflegeheime (Alte, Behinderte)	15	0	122	163	203	214	235	272	191	191	135	135
4000	Schulen	3.386	0	84	104	123	145	171	217	149	125	105	90
4100	Allgemeinbildende Schulen	1.739	0	81	99	116	134	159	201	139	125	105	90

Abbildung 14: Klassengrenzen für Heizwärmeverbrauch nach IEMB.

Quelle: Stadt Frankfurt a.M. (2006).

²⁷ U.a. verwendet die Stadt Frankfurt diese Daten seit vielen Jahren zum energetischen Klassifizierung ihres Gebäudebestandes.

²⁸ Vgl. Deutscher Städtetag (2007), S. 4.

Das einige Jahre zurückliegende Datum der Erhebung lässt vermuten, dass die Daten nicht den aktuellen Stand der Verbräuche in Deutschland widerspiegeln. Insbesondere aufgrund der landesweiten massiven Anstrengungen zur Erhöhung der Energieeffizienz ist davon auszugehen, dass die Vergleichswerte sich tendenziell reduziert haben. Aufgrund der Vorzüge in der Auswertung und mangels qualitativ gleichwertiger Alternativen wurde diese Datenbasis dennoch für die Vergleichszwecke herangezogen. Eine Aktualisierung der IEMB-Daten ist zu begrüßen und bei Beibehaltung der aufgezeigten Systematik jederzeit problemlos implementierbar.

Durch die Definition von kleinteiligen Klassen wird eine deutlich genauere Einschätzung der Gebäude möglich. Abbildung 14 zeigt einen Ausschnitt mit den Klassengrenzen für Heizwärmeverbrauch in Abhängigkeit der BWZK-Gruppe. Rechts in der Tabelle sind zudem die oben bereits vorgestellten Vergleichswerte des BMVBS angegeben. Die Klassengrenzen werden durch das IEMB in gleicher Weise wie für den Heizenergieverbrauch auch für den Strom- und Wasserverbrauch bereitgestellt.

Für die untersuchten Gebäude des Freistaates Thüringen wurde eine Einordnung der Wärme- und Stromverbräuche vorgenommen. Die sich daraus ableitende Übersicht über die Verbräuche und die damit verbundene Energieeffizienz ist in Abbildung 15 für eine Auswahl an Gebäuden dargestellt.

	EE-Klasse Wärme nach IEMB (2006)									Benchma laut BMV	EE-Klasse Strom nach							ch		ark Strom BS (2009a)		
lfdNr.										Mittelwert	Vergleichswert										Mittelwert	Vergleichswert
										EnEV 2007	EnEV 2009										EnEV 2007	EnEV 2009
		Α	В	С	D	Ε	F	G		[kWh/m²a]	[kWh/m²a]		Α	В	С	D	Ε	F	G		[kWh/m²a]	[kWh/m²a]
~	~	~	~	w	₩	~	Ŧ	₹	~	₩	~	₩	~	~	~	*	¥	~	~	~	₩	
1				С						erfüllt	nicht e.					D					erfüllt	nicht e.
2								G		nicht e.	nicht e.								G		nicht e.	nicht e.
3							F			nicht e.	nicht e.							F			nicht e.	nicht e.
4							F			nicht e.	nicht e.						Ε				erfüllt	nicht e.
5							F			nicht e.	nicht e.								G		nicht e.	nicht e.
6		Α								erfüllt	erfüllt		Α								erfüllt	erfüllt
7				\circ						erfüllt	nicht e.				U						erfüllt	erfüllt
8			В							erfüllt	nicht e.			В							erfüllt	erfüllt
9			В							erfüllt	nicht e.								G		nicht e.	nicht e.

Abbildung 15: Energieeffizienz-Klassen für Heizwärme- und Stromverbrauch (Ausschnitt). Quelle: Eigene Darstellung.

Aus der Gegenüberstellung wird deutlich, dass die Angaben zur Energieeffizienz-Klasse mit der Erfüllung bzw. Nichterfüllung der BMVBS-Vorgaben **korrelieren**. Entspricht beispielsweise der Energieverbrauch eines Gebäudes der Klasse "E" oder schlechter, so werden auch Vergleichswert sowie Mittelwert als "nicht e." (nicht erfüllt) ausgewiesen. Es wird aber auch deutlich, dass die Angabe der Energieeffizienz-Klasse zu einer stärkeren Differenzierung führt und damit eine wertvolle Ergänzung zu den BMVBS-Kennwerten darstellt. Es ist z.B. besser erkennbar, ob der Vergleichswert nur knapp verfehlt wurde (z.B. bei "B") oder ob eine gravierende Überschreitung vorliegt (z.B. bei "G").

3.7 Ermittlung der Einsparpotenziale

Da die finanziellen und personellen Ressourcen öffentlicher Gebietskörperschaften begrenzt sind, reichen sie nicht aus, alle erstrebenswerten Maßnahmen zur Steigerung der Energieeffizienz umzusetzen. Für investive bauliche Maßnahmen, wie die Sanierung oder Modernisierung der baulichen und technischen Gebäudesubstanz, ist es daher erforderlich, **Prioritäten** zu setzen. Mit Blick auf die Energieeffizienz zielen bauliche Maßnahmen auf eine optimierte Energiebewirtschaftung und einen effizienten Energieeisatz ab. Unter wirtschaftlichen Gesichtspunkten ist es sinnvoll, die Energieeisparinvestitionen zu bevorzugen, die sich durch hohe Energiekostenreduzierungen in kurzer Zeit amortisieren.³⁰ Dies setzt zunächst ein hohes Energieeinsparpotenzial voraus.

Das **Energieeinsparpotenzial** errechnet sich aus der Differenz des gemessenen Verbrauchskennwertes des Bezugsjahres bzw. des Durchschnittswertes über mehrere Jahre (vgl. Formel 3) und dem für das konkrete Gebäude geltenden Vergleichswertes. Multipliziert man diese Differenz mit der Bezugs-

-

³⁰ Vgl. VDI 3807, Blatt 1, S. 32 ff.

fläche des Gebäudes, erhält man die für den Gebäudetyp zu erwartende Energieeinsparung. Die Berechnung erfolgt für die Medien Wärme, Strom und Wasser in gleicher Weise. Formel **4** zeigt die Ermittlung am Beispiel des Heizenergieverbrauchs. Über die Investitionshöhe, die erforderlich ist, um die Einsparung zu erzielen, macht dieser Wert keine Angabe.

$$E_{eP} = A_{NGF} \cdot (e_{Vb} - e_{Vb \ Vergleichswert}) \tag{4}$$

Legende:

E_{eP} Energieeinsparpotenzial in kWh/a A_{NGF} Energiebezugsfläche in m²

 $\begin{array}{ll} e_{Vb} & Energieverbrauchskennwert des Bezugsjahres in KWh/(m^2*a) \\ e_{Vb \, Vergleichswert} & Vergleichswert in kWh/(m^2*a) \, (gemäß \, BMVBS \, (2009a)) \end{array}$

Formel 4: Ermittlung des Energieeinsparpotenzials.

Quelle: In Anlehnung an VDI 3807, Blatt 1, S. 32.

Diese Vorgehensweise wurde auf die Gebäude des Freistaates Thüringen übertragen, soweit die erforderlichen Daten zur Verfügung standen. Im Ergebnis kann für jedes einzelne Gebäude ein Wert angegeben werden, der das jeweilige Energieeinsparpotenzial ausgibt (vgl. Abbildung 16). Wird das Energieeinsparpotenzial mit Null ausgegeben, weist dies darauf hin, dass die Verbrauchswerte dieser Gebäude jetzt schon besser als der Vergleichswert sind. In dem beispielhaften Auszug wäre nach dem Kriterium der Höhe des Einsparpotenzials pro Jahr beim Wärmeverbrauch dem Objekt Nr. 5 die höchste Priorität zuzuordnen. Wird die Einsparmöglichkeit pro m² als Entscheidungsgröße gewählt, ist das Objekt Nr. 2 als erstes auszuwählen.

lfd. Nr.	Energie- bezugsfläche A _{NGF} [m²]	Verbrauchs- kennwert Wärme e _{vb} [kWh/m²a]	Vergleichswe WW e _{Vb V} (EnEV 2009) <= 3.500 m ²	ergleichswert	Einspar- potenzial Wärme [kWh/(m²a]	Einspar- potenzial Wärme E _{eP,h} [kWh/a]	Einspar- potenzial Wärme in Prozent [%]
1	4.947	128	105	105	23	113.345	18%
2	1.362	227	90	90	137	186.176	60%
3	2.620	206	90	85	116	302.970	56%
4	2.255	206	90	90	116	260.871	56%
5	3.157	219	105	105	114	361.002	52%
6	3.691	74	80	85	0	0	0%
7	1.519	124	105	105	19	28.352	15%
8	5.256	97	90	85	12	60.862	12%
9	18.622	71	55	55	16	298.385	23%

Abbildung 16: Ermittelte Energieeinsparpotenziale beim Wärmeverbrauch (Auszug).

Quelle: Eigene Darstellung.

Auf dieser Basis können die Energieeisparpotenziale einzelner Gebäude eines Portfolios der Höhe nach absteigend sortiert werden. Zur Bildung einer wirtschaftlichen **Prioritätenreihenfolge** bietet es sich zusätzlich an, die über die Nutzungsdauer der Gebäude zu erwartende **Gesamteinsparung** zu ermitteln.³¹ Durch die Multiplikation mit dem erwarteten durchschnittlichen Energiepreis über die betrachtete Nutzungsperiode lässt sich damit die kostenmäßige Einsparung beziffern (vgl. Formel 5).

.

³¹ Vgl. VDI 3807, Blatt 1, S. 33.

$$K_{eP} = E_{eP} \cdot P_e \tag{5}$$

Legende:

K_{eP} Kosteneinsparpotenzial in EUR/a
 E_{eP} Energieeinsparpotenzial in kWh/a
 P_e Energiepreis in EUR/KWh

Formel 5: Ermittlung des Kosteneinsparpotenzials.

Quelle: Eigene Darstellung in Anlehnung an VDI 3807, Blatt 1, S. 35.

Als Anhaltspunkt für Energieeisparinvestitionen hilft diese Größe dabei einzuschätzen, ob die im Rahmen von Baumaßnahmen initiierten Auszahlungen noch während der zu erwartenden Nutzungsperiode durch Energieeinsparungen ausgeglichen bzw. übertroffen werden. Sind die entsprechenden Baukosten bekannt, lassen sich die Investitionsmöglichkeiten ausweisen, bei denen sich die Investition nach einem möglichst frühen Zeitpunkt amortisiert.

Für das Immobilienportfolio des Freistaates Thüringen ist die erreichbare Kosteneinsparung für den Heizenergieverbrauch und den Stromverbrauch in Abbildung 17 dargestellt. Die Kosteneinsparung ist für den Heizenergieverbrauch und den Stromverbrauch angegeben. Die Energiepreise für Wärme (6,96 ct/kWh) und Strom (15,31 ct/kWh) wurden vereinfachend als Durchschnittswert über alle Liegenschaften des Freistaates Thüringen angesetzt. Die Addition beider Ergebnisse bietet sich z.B. an, wenn Komplettsanierungen geplant sind und Kopplungseffekte nutzbar sind. In dem konkreten Auszug weist das Gebäude Nr. 9 das höchste Kosteneinsparpotenzial auf und bietet sich dadurch zur bevorzugten Auswahl für Energieeinsparmaßnahmen an.

			Kosten-			Kosten-	SUMME
	Einspar-		einspar-	Einspar-		einspar-	Kosten-
lfd. Nr.	potenzial	Energiepreis	potenzial	potenzial	Energiepreis	potenzial	einspar-
	Wärme E _{eP,h}	Wärme P _{e,h}	Wärme K _{eP,h}	Strom E _{eP,s}	Strom P _{e,s}	Strom K _{eP,s}	potenziale
	[kWh/a]	[EUR/kWh]	[EUR/a]	[kWh/a]	[EUR/kWh]	[EUR/a]	[EUR/a]
1	113.345	0,0696	7.889	41.611	0,1531	6.371	14.259
2	186.176	0,0696	12.958	944.687	0,1531	144.632	157.589
3	302.970	0,0696	21.087	105.902	0,1531	16.214	37.300
4	260.871	0,0696	18.157	24.642	0,1531	3.773	21.929
5	361.002	0,0696	25.126	176.051	0,1531	26.953	52.079
6	0	0,0696	0	0	0,1531	0	0
7	28.352	0,0696	1.973	0	0,1531	0	1.973
8	60.862	0,0696	4.236	0	0,1531	0	4.236
9	298.385	0,0696	20.768	1.132.638	0,1531	173.407	194.174

Abbildung 17: Ermittelte Kosteneinsparpotenziale bei Wärme- und Stromverbrauch (Auszug).

Quelle: Eigene Darstellung.

³² Auskunft des THÜLIMA im Februar 2013.

4. Datenanalyse und -auswertung

Nachdem bisher beschrieben wurde, wie die erforderlichen Gebäudeinformationen aufzubereiten und daraus Kennwerte zu bilden sind, wird nun auf die Auswertungsmöglichkeiten eingegangen. Dabei steht die Untersuchungsebene der Voranalyse (vgl. Abbildung 2) im Mittelpunkt. Diese wird zum Abschluss durch das Beispiel einer Feinanalyse unterlegt. Dabei werden Vorschläge unterbreitet, wie die Berechnungsergebnisse einer energetischen Potenzialanalyse auch grafisch ausgewertet werden können und welche Schlussfolgerungen daraus jeweils zu ziehen sind. Es wird ein Ausschnitt der vielfältigen Anwendungsmöglichkeiten gezeigt, die je nach Bedarf und Zielsetzung des öffentlichen Bestandshalters ausgewählt werden können.

4.1 Auswertung für den Gesamtgebäudebestand

Um den Aufwand zur Beschaffung von Daten und der Durchführung von Untersuchungen zu begrenzen und dennoch überblicksartige Aussagen über alle betrachteten Gebäude des Immobilienbestandes treffen zu können, bietet sich eine **verbrauchsorientierte Potenzialanalyse** auf Portfolioebene an. Aussagen zur Größe des Einsparpotenzials bei Wärme- und Stromverbrauch erfolgen unter Einbeziehung alle Gebäude.

Für den Immobilienbestand im Eigentum des Freistaates Thüringen bedeutet dies mit Stand 2013 die Analyse von **938 energetisch relevanten Gebäuden**. In dieser Summe sind alle nicht leer stehenden Gebäude erfasst, die einen Energieverbrauch aufweisen und über eine Fläche von mehr als 10 m² verfügen. Trafostationen, Garagen etc. zählen entsprechend nicht zur Untersuchungsmenge. Die betrachteten Gebäude verfügen zusammen über eine Netto-Grundfläche i.H.v. rund 1,7 Mio. m².

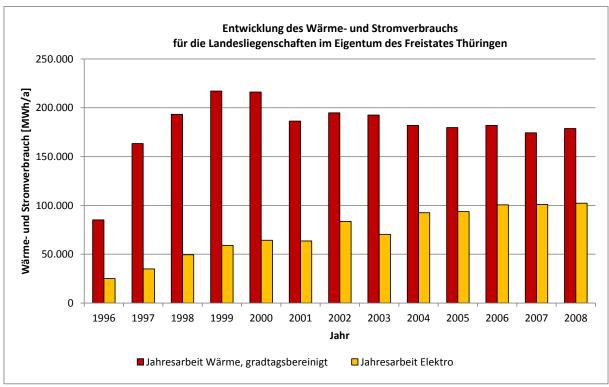


Abbildung 18: Entwicklung des Wärme- und Stromverbrauchs für die Landesliegenschaften im Eigentum des Freistaates Thüringen.

Quelle: Eigene Darstellung.

Für das Jahr 2011 beträgt der Wärmeverbrauch des Portfolios rund 183.000 MWh. Im Vergleich zu den historischen Werten der Abbildung 18 zeigt sich ein leicht rückläufiger bis konstanter Verlauf. Der Stromverbrauch wird im Jahr 2011 mit 117.500 MWh angegeben. Der Trend eines sukzessive leicht steigenden Verbrauchs setzt sich damit fort. Die **Energiekosten** (Wärme und Strom) für die landeseigenen Immobilien belaufen sich jährlich auf rund **35 Mio. Euro.**³³

4.1.1 Wärme- und Stromverbrauchs nach Energieeffizienz-Klassen

Ausgehend von der Einordnung jedes Gebäudes in eine Energieeffizienzklasse hinsichtlich Wärmeund Stromverbrauch, kann die **Häufigkeit der einzelnen Klassen** ermittelt werden.³⁴ Eine entsprechende Darstellung für den Gesamtgebäudebestand lässt erste Rückschlüsse auf die Gesamtsituation zu. Die Besteffizienz A ist hierbei farblich mit dunkelgrün gekennzeichnet. Für die 218 vertiefend untersuchten Gebäude des Freistaates ergibt sich das Bild entsprechend Abbildung 19.

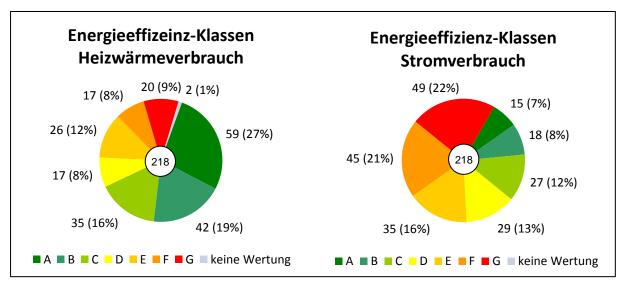


Abbildung 19: Verteilung der Energieeffizienz-Klassen für den untersuchten Gebäudebestand. Quelle: Eigene Darstellung.

Auffällig ist beim **Heizwärmeverbrauch** die hohe Anzahl an Objekten mit Bestnoten. Die drei höchsten Energieeffizienz-Klassen A bis C werden von zusammen 62 % bzw. 136 der Gebäude erreicht. Auf die untersten drei Kategorien E bis G entfallen mit 63 lediglich 29 % der Gebäude. Trotz einiger Gebäude mit deutlichem Verbesserungspotenzial weisen die Gebäude beim Heizwärmeverbrauch damit überwiegend gute bis sehr gute Bewertungen auf.

Beim **Stromverbrauch** zeigt sich ein umgekehrtes Bild. Es lassen sich deutliche Optimierungspotenziale erkennen. Die Klassen A bis C werden nur bei 60 bzw. 27 % der Objekte erreicht. Mit 129 bzw. 59 % weisen über die Hälfte der Gebäude einen hohen bis sehr hohen Stromverbrauch der Klassen E bis G auf.

Zusammenfassend ist für das untersuchte Immobilienportfolio festzustellen, dass beim Wärmeverbrauch überwiegend ein hohes Niveau besteht und viele Gebäude Vorbildcharakter aufweisen. Währenddessen bedarf es beim Stromverbrauch insgesamt besonderer Anstrengungen zur Verbesserung der Energieeffizienz. Hier weisen bisher nur weniger Objekte Bestwerte auf.

-

³³ Vgl. u.a. THÜLIMA (2011), S. 10.

³⁴ Vgl. zur Systematik der Energie-Effizienzklassen Abschnitt 3.6

Die Kategorisierung nach Energie-Effizienzklassen kann zur **Identifizierung auffälliger Gebäude** genutzt werden. Vorstellbar ist neben der Auswahl der jeweiligen Hochverbraucher beim Wärme- und Stromverbrauch z.B. auch eine Auswahl der Gebäude, die in beiden Kategorien durch eine niedrige Energieeffizienz auffallen. Im Ergebnis einer entsprechenden Abfrage zur niedrigsten Energieeffizienz-Klasse G sowohl beim Wärme- als auch beim Stromverbrauch weist Abbildung 20 für das untersuchte Portfolio **12 Gebäude** aus.

Mit der Erwartung, dass durch Kopplungseffekte bei der energetischen Sanierungen dieser Gebäude hohe Einsparmöglichkeiten zu vertretbaren Kosten entstehen, könnten diese gezielt eine detaillierteren Untersuchung, z.B. in Form einer Feinanalyse³⁵, zugeführt werden. Vorausgesetzt ist dabei stets, dass die Gebäude auch weiterhin genutzt werden sollen. Steht ein Verkauf oder der Ersatz durch einen Neubau zur Disposition, stellen auch kosteneffektive Sanierungen keine geeignete Alternative dar.

lfdNr.	BW Z K	Energie- bezugs- fläche	Verbrauc 3-Jahres- Wert [kWh/a]	h Wärme Verbrauchs- kennwert [kWh/m²a]		ı	EE-K	h IE	МВ	(20	006)			Verbraud 3-Jahres- Wert [kWh/a]	ch Strom Verbrauchs- kennwert [kWh/m²a]			II	EMI	e Str	006)	
_	_		<u> </u>	[KVVIVIII a]	_	A	В	C	D	E		G ,▼	~	[KWI#4]	[KVVIVIII a]	w	A	B	C	D	E		G
2	1350	1.362	308.742	227								G	سه	1.155.774	849								G
23	2200	3.518	1.992.696									G		554.212	158				П	П	寸		G
42	1342	1.741	865.545	497							┪	G		149.810	86						T	\Box	G
44	1342	1.429	451.657	316								G		101.222	71							\Box	G
55	1200	1.825	419.004	230								G		118.426	65								G
70	1200	1.232	272.608	221								G		58.305	47								G
71	1342	842	244.171	290								G		62.533	74								G
136	1200	2.479	1.332.498	538								G		270.343	109								G
157	1311	4.152	807.150	194								G		249.514	60								G
158	6530	1.609	400.502	249								G		322.769	201					Ш			G
161	1300	1.598	761.054	476								G		207.625	130					Ш			G
235	2300	4.938	1.742.453	353								G		1.968.333	399					Ш			G
254	1342	845	193.432	229								G		117.059	139								G

Abbildung 20: Gebäude mit der Energieeffizienz-Klasse G bei Wärme- und Stromverbrauch.

Quelle: Eigene Darstellung.

Für weitere Rückschlüsse wurde ein Vergleich der Einzelobjekte unter Einbeziehung des **absoluten Energieverbrauchs** als zusätzliches Unterscheidungsmerkmal durchgeführt. Damit wird zusätzlich die Einschätzung zum Einfluss von Einzelgebäuden auf den Energieverbrauch des Gesamtbestands möglich.

4.1.2 Wärme- und Stromverbrauch der Einzelobjekte auf Portfolioebene

Neben einem Überblick über die Verteilung der energetischen Qualität der Gebäude in einem Portfolio ist eine Potenzialanalyse auch geeignet, positive wie negative **Ausreißer** im Vergleich zur Mehrzahl der Objekte aufzuzeigen. In Abbildung 21 sind einige solcher separat stehenden Objekte in der **Auswertung für den Wärmeverbrauch** erkennbar.³⁶ Jeder einzelne Datenpunkt kennzeichnet ein Gebäude.

³⁵ Vgl. zur durchgeführten Feinanalyse Abschnitt 4.4. und zur methodischen Einordung Abschnitt 1.5.

³⁶ Diese Auswertung ist in gleicher Weise auch für den Stromverbrauch erstellbar.

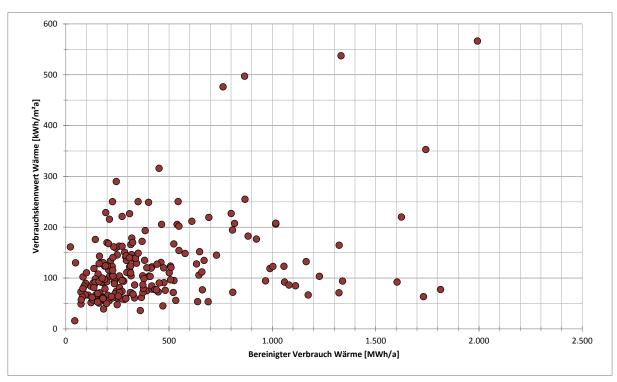


Abbildung 21: Portfolio-Auswertung für den Wärmeverbrauch.

Quelle: Eigene Darstellung.

Das Koordinatensystem spannt sich zwischen dem absoluten Wärmeverbrauchs pro Jahr und dem Verbrauchskennwert pro m² NGF Energiebezugsfläche auf.³⁷ Aufgrund ihrer flächenmäßigen Größe erreicht der jährliche Wärmeverbrauch bei einigen der untersuchten Gebäude über 1.000 MWh/a, im **Spitzenwert** sogar 2.000 MWh/a.

Die Gebäude mit hohem relativem (y-Achse) wie auch absolutem Verbrauchswert (x-Achse) sollten als erstes einer vertieften energetischen Untersuchung unterzogen werden, da bei ihnen ein besonders großes Effizienzsteigerungs- und Einsparpotenzial zu vermuten ist. Anschließend sollten die weiteren Gebäude mit hohen Verbrauchskennwerten prioritär analysiert werden. Besonders auffällig ist das Objekt Nr. 23, das sich am weitesten der Diagrammecke rechts oben genähert hat. Das Institutsgebäude für Forschung und Lehre, das in den 1960er Jahren errichtet wurde, ist auf jeden Fall ein Kandidat für eine weitergehende Untersuchung, da der Wärmeverbrauch bei keinem der anderen Gebäude im Portfolio höher ist.

Da die Vergleichswerte gebäudespezifisch unterschiedlich sind, wird in dem Diagramm kein konkreter Richtwert als Benchmark angegeben. **Als Orientierung** kann hier lediglich der **Mittelwert** der untersuchten Gebäude herangezogen werden. Für den Verbrauchskennwert beträgt dieser 122 kWh/m²a und für den bereinigten Verbrauch 421 MWh/a.

Das Pendant für den **Stromverbrauch** zeigt Abbildung 22. Die Werte liegen hier insgesamt dichter zusammen, was teilweise aber mit den prinzipiell niedrigeren Verbrauchswerten beim Strom zu erklären ist. Dementsprechend niedrig fallen die Mittelwerte aus. Beim Verbrauchskennwert ergeben sich 62 kWh/m²a, der durchschnittliche bereinigte Verbrauch liegt bei 246 MWh/a. Außerhalb des Sektors

³⁷ Die Auswertung anhand von absoluten und spezifischen Verbrauchswerten, z.B. in Form eines Koordinatensystems oder einer 4-Felder-Matrix, wird auch durch die Bauministerkonferenz (2009), S. 5 ff., empfohlen.

x: 1.000 MWh/a; y: 250 kWh/m² liegen lediglich 9 Gebäude. Am auffälligsten davon ist das Rechenzentrum Nr. 159 mit dem Wertepaar x: 2.800 MWh/a; y: 245 kWh/m²a. Wenn allein der Stromverbrauch im Mittelpunkt von geplanten Energieeffizienzmaßnahmen steht, dann sollten diese neun Gebäude als erste weitergehend untersucht und einer Optimierung zugeführt werden.

Das Beispiel des Rechenzentrums deutet auf eine **Schwäche** der Darstellungsform hin. Denn der je Gebäudeart bestehende spezifische Energiebedarf wird nicht dargestellt. Im Vergleich zu anderen Gebäudearten weisen Rechenzentren z.B. systembedingt einen sehr hohen Strombedarf auf. Als Vergleichswert werden vom BMVBW hohe 155 kWh/m²a angegeben. ³⁸ Damit relativiert sich die Ausreißer-Stellung des Objektes Nr. 159 ein Stück weit. Wobei festzuhalten bleibt, dass trotz der Höhe des Vergleichswertes dieser überschritten wird und demnach deutlicher Optimierungsbedarf besteht.

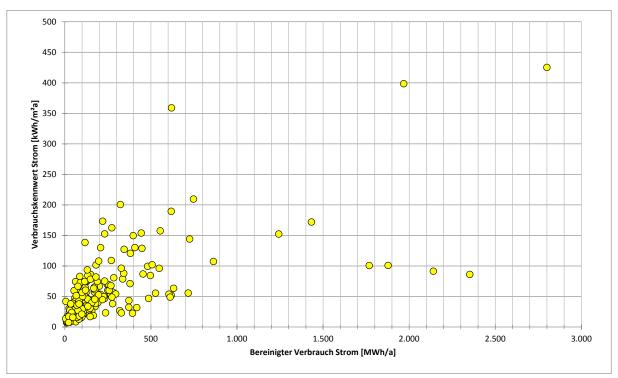


Abbildung 22: Portfolio-Auswertung für den Stromverbrauch.

Quelle: Eigene Darstellung.

Mit der Darstellung lassen sich **Ausreißer** mit schlechter Energieeffizienz und hohem absolutem Energieverbrauch schnell erkennen. Darüber hinaus ist die Aussagekraft allerdings begrenzt. Die Ausreißer werden für jeweils ein Untersuchungskriterium erfasst - die Energieeffizienz in anderen Kategorien ist nicht ersichtlich. Eine Form der Auswertung, in der die Besonderheiten der einzelnen Gebäudearten berücksichtigt sind, stellt das 4-Quadranten-Modell dar.

4.1.3 Kombinierte Potenzialanalyse für Wärme und Strom

Um das **spezifische Energieeffizienz-Potenzial** eines jeden Gebäudes abbilden zu können, ist ein Bezug zu Vergleichswerten herzustellen, in denen die jeweilige Gebäudeart berücksichtig ist. Eine geeignete Möglichkeit dafür stellt die Abbildung 23 dar. Damit wird ein Überblick über den Wärme- und Stromverbrauch im Vergleich zum Richtwert der jeweiligen BWZK-Gruppe gegeben. Durch die prozentuale Angabe der Abweichung vom Richtwert können alle Gebäude vergleichend erfasst werden.

³⁸ Vgl. Anhang 5, BMZK 1.350.

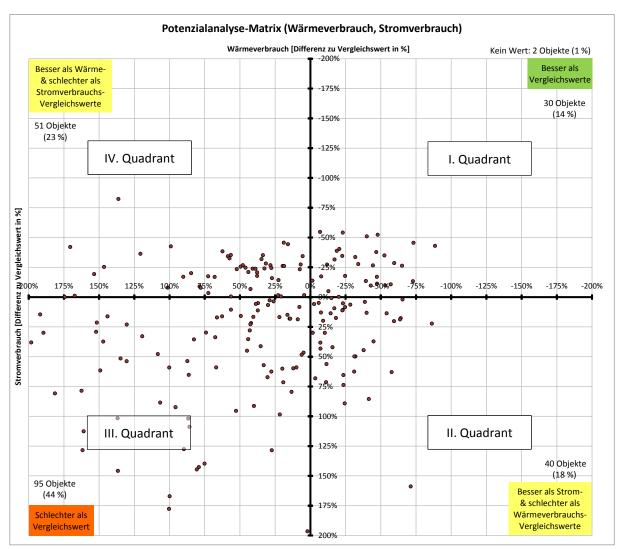


Abbildung 23: Verbrauchsorientierte Potenzialanalyse auf Portfolioebene (Ausschnitt).

Quelle: Eigene Darstellung.

Die Grafik ist in vier Quadranten unterteilt. Alle im **I. Quadranten** enthaltenen Objekte zeichnen sich dadurch aus, dass Sie sowohl beim Heizwärme- als auch beim Stromverbrauch besser abschneiden, als der Vergleichswert dies vorgibt. In dieser Kategorie sind 30 (14 %) der untersuchten 218 Gebäude einzuordnen. Ein weitaus größerer Teil der Gebäude liegt im **III. Quadranten**. Diese 95 (44 %) der untersuchten Gebäude erreichen bei Heizwärme- und Stromverbrauch den Vergleichswert nicht.³⁹ Bei 41 % der Gebäude wird zumindest einer der beiden Richtwert erfüllt. Je nachdem ob die Benchmark beim Strom- oder beim Heizwärmeverbrauch erreicht wird, liegen die Gebäude im II. oder IV. Quadranten.

Aus der Darstellung ist abzuleiten, dass bei den Gebäuden in den **Quadranten II bis IV Optimierungspotenzial** besteht. Allein bei den Gebäuden im I. Quadranten entsprechen die Verbrauchsdaten bereits heute den anzustrebenden Richtwerten, sodass hier kurzfristig keine Maßnahmen zur energetischen Sanierungen notwendig erscheinen. Im Durchschnitt der 218 Objekte wird der Vergleichswert für den Heizwärmeverbrauch um 35 % und für den Stromverbrauch um 76 % überschritten. Eine

³⁹ In der Abbildung sind Datenpunkte nicht sichtbar, die außerhalb des aufgespannten Korridors liegen.

vertiefende Untersuchung der Gebäude ist entsprechend ihrem Einsparpotenzial in der **Reihenfolge III., II./IV. Quadrant** vorzunehmen.

Die grafische Auswertung eignet sich für das Identifizieren von Objekten, die beim Wärme- und Stromverbrauch in Summe das **größte Einsparpotenzial** aufweisen. Je näher ein Objekt der Diagrammecke links unten kommt, desto höher ist die Abweichung zu den Vergleichswerten. Aufgrund der hohen Abweichung lässt sich die Erwartung ableiten, dass bei diesen Objekten schon mit wenigen Maßnahmen besonders hohe Einsparungen erzielt werden können.

Soll in der **4-Quadranten-Darstellung** zusätzlich der Einfluss eines Einzelobjektes auf das Gesamtportfolio dargestellt werden, bietet sich die Größe der Objektpunkte dafür an.

4.1.4 Potenzialanalyse unter Einbeziehung der Gebäudeflächen

Um detailliertere Aussagen über den **Umfang des Energieeinsparpotenzials** treffen zu können, stellt die Berücksichtigung der **Gebäudeflächen** der einzelnen Objekte eine Möglichkeit dar. Im Schaubild der Abbildung 24 ist die Energiebezugsfläche (NGF) als zusätzliches Kriterium enthalten.

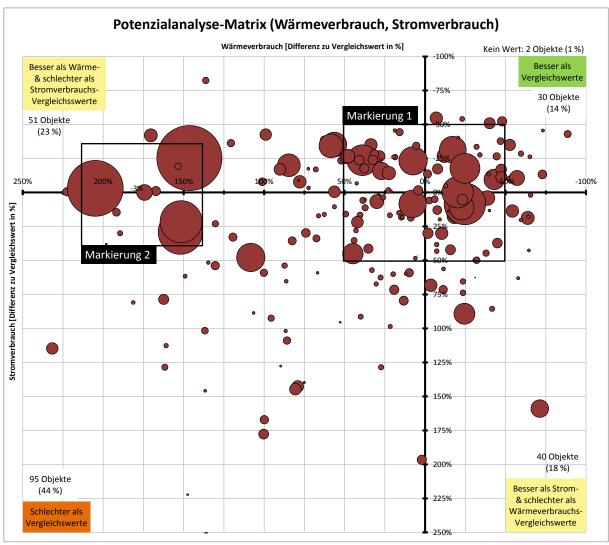


Abbildung 24: Verbrauchsorientierte Potenzialanalyse auf Portfolioebene mit Größenkriterium Energiebezugsfläche (NGF).

Quelle: Eigene Darstellung.

Der Durchmesser eines Datenpunktes gibt Auskunft über die Höhe der Energiebezugsfläche des zugehörigen Gebäudes. Gebäude mit einer **großen Gebäudefläche** werden auf einen Blick ersichtlich. Bei diesen Gebäuden ist davon auszugehen, dass sie einen großen Einfluss auf den Gesamtenergieverbrauch des betrachteten Gebäudebestandes haben. Energetische Sanierungsmaßnahmen an diesen Gebäuden können zu deutlichen Effekten auf Ebene des Gesamtportfolios führen. Besteht die Absicht, den Gebäudebestand energetisch zu verbessern und sich dabei auf **Einzelobjekte zu konzentrieren**, bietet es sich an, mit flächenmäßig großen Objekten des III. Quadranten (unten links im Diagramm) zu beginnen.

81 der untersuchten 218 Gebäude erfüllen den Vergleichswert Wärme oder sind sogar besser als dieser (37 %). In der Matrix werden diese wärme-effizienten Gebäude oberhalb der x-Achse angezeigt. Hinsichtlich des Stromverbrauches verfügt das Portfolio über 70 Gebäude (32 %), die den Richtwert mindestens erfüllen. In der Matrix befinden sich diese Objekte rechts von der y-Achse. Der prozentuale Wert der **Top-Objekte** bei Wärme und Strom kann als erster Indikator für den Gesamtzustand des Portfolios dienen. In beiden Bereichen kann jeweils ein Drittel der Gebäude als energieeffizient gelten, während bei den restlichen zwei Dritteln Einsparpotenziale bestehen. Nur wenige Gebäude erzielen beim Wärme- und Stromverbrauch Topwerte (14 % im I. Quadranten), während die meisten in dem jeweils anderen Bereich Defizite aufweisen.

Um den Koordinatenursprung ist eine hohe Konzentration festzustellen (**Markierung 1**). Diese Objekte über- oder unterschreiten ihre konkreten Vergleichswerte in mäßigem Umfang. Im direkte Umkreis des Diagrammmittelpunktes +/- 25 % sind 28 Gebäude bzw. rund 13 % des untersuchten Bestandes verortet und können im Vergleich zu den anderen Gebäuden als unauffällig eingestuft werden. In dem weiter gefassten Bereich der Markierung 1 (+/- 50 %) um das Zentrum sind 91 Objekte (42 %) enthalten.

Eine auffällige Ansammlung von vier besonders großflächigen Objekten ist im Bereich der x-Achse festzustellen (siehe **Markierung 2**). Während der Wärmeverbrauch bei diesen Gebäuden in der Nähe des Richtwertes liegt, weist der Stromverbrauch das 1,5 bis 2-fache des Vergleichswertes auf. Hier wird deutlich, dass sich insbesondere Maßnahmen zur Senkung des Stromverbrauchs aufgrund der umfangreichen Gebäudefläche stark auf der Portfolioebene auswirken.

Bei genauer Betrachtung ist festzustellen, dass es sich mit rund 17.000 bis 27.000 m² NGF um die vier flächenmäßig größten der untersuchten Objekte mit den Nummern 9, 11, 64 und 255 handelt, wovon jeweils zwei als Hochschulbibliothek und Institutsgebäude für Forschungs- und Lehrzwecke genutzt werden. Es ist auffällig, dass diese vier flächenmäßig aus dem Gesamtbestand herausragenden Gebäude gleichermaßen einen moderaten Wärmeverbrauch und einen deutlich erhöhten Stromverbrauch aufweisen. Neben der Flächengröße und der Nutzungsart bestehen keine weiteren offensichtlichen Zusammenhänge (z.B. Liegenschaftsverwalter), die einen Hinweis auf die Ursache der Konzentration dieser Objekte geben könnten. Ein systematischer Zusammenhang ist dennoch nicht auszuschließen und sollte im Rahmen einer vertiefenden Analyse überprüft werden. Um zu weiteren Erkenntnissen zu gelangen, sollen nun die einsparbaren Energiekosten ermittelt werden, zunächst für den Gesamtbestand, dann gesondert für die vier auffälligen Gebäude.

4.1.5 Potenzialanalyse unter Berücksichtigung der Kosten

In dem vorliegenden Forschungsprojekt wurde der Energieverbrauch von 218 der 938 energetisch relevanten Landesgebäude des Freistaates Thüringen detailliert erfasst. Damit wurden rund 23 % des

Gesamtbestandes untersucht. Unter Ansatz der Netto-Grundfläche von 864.278 m² beträgt der Anteil der untersuchten Gebäude sogar mehr als die Hälfte (52 %). Die 218 Gebäude weisen einem Wärmeverbrauch i.H.v. rund 91.900 MWh/a⁴⁰ bzw. einen flächenspezifischen Wärmeverbrauch von 106 kWh/m²a auf. Die Gesamtsumme des Stromverbrauchs beläuft sich auf rund 53.200 MWh/a bzw. einem flächenbezogenen Verbrauch von 61 kWh/m²a.

Zunächst soll ein Überblick über die Verbrauchsdaten und das Kosteneinsparpotenzial der Objekte der 218 Gebäude gegeben werden, die ein Energieeffizienzpotenzial aufweisen, da auf dieser Grundlage die Hochrechnung aufgebaut ist.

Nr.	Merkmal	Wärme	Strom	
1	Anzahl der Gebäude mit Effizienzpotenzial	136	148	
		(62 % von 218)	(68 % von 218)	
2	Netto-Grundfläche der Gebäude der Zeile 1	472.000 m²	574.000 m²	
3	Gesamt-Energieverbrauch der Gebäude der Zeile 1	65.300 MWh/a	45.800 MWh/a	
4	Durchschnittlicher Energieverbrauch der Gebäude der Zeile 1 pro Jahr [Zeile 3÷1]	480,2 MWh/a	309,3 MWh/a	
5	Durchschnittlicher Energieverbrauch der Gebäude der Zeile 1 pro Jahr und m² [Zeile 3÷2]	138 kWh/m²a	80 kWh/m²a	
6	Gesamt-Energieeinsparpotenzial für die Gebäude der Zeile 1	24.700 MWh/a	25.300 MWh/a	
7	Durchschnittliches Energieeinsparpotenzial der Gebäude aus Zeile 1 pro Jahr [Zeile 6÷1]	181,4 MWh/a	171,2 MWh/a	
8	Durchschnittliches Energieeinsparpotenzial der Gebäude aus Zeile 1 pro Jahr und m² [Zeile 6÷2]	52 kWh/m²a	44 kWh/m²a	
9	Angesetzter Energiebezugspreis	6,96 ct/kWh	15,31 ct/kWh	
10	Summe Kosteneinsparpotenzial p.a. [Ziele 6x9]	1,7 Mio. EUR	3,9 Mio. EUR	
11	Durchschnittliches Kosteneinsparpotenzial pro m² Netto-Grundfläche pro Jahr [Zeile 10÷2]	3,60 EUR/m²a	6,80 EUR/m²a	

Abbildung 25: Effizienzpotenziale für die relevanten der 218 untersuchten Landesgebäude. Quelle: Eigene Darstellung.

Mit starker Vereinfachung wurde das **durchschnittliche Energieeinsparpotenzial** für die 218 untersuchten Gebäude ermittelt. Dazu wurde allein auf die 136 bzw. 148 Gebäude Bezug genommen, die einen erhöhten Wärme- bzw. Stromverbrauch aufweisen. Als Wärmebezugspreis wurde ein Durchschnittspreis für den Gesamtbestand i.H.v. 6,96 ct/kWh angesetzt. Als Durchschnittspreis für den Bezug von Strom wurden 15,31 ct/kWh verwendet.⁴¹

Im Ergebnis können bei einem **durchschnittlichen Gebäude mit Effizienzpotenzial** 52 kWh/m²a des Wärmeverbrauchs eingespart werden. Beim Stromverbrauch wird die durchschnittlich mögliche Reduzierung auf 44 kWh/m²a geschätzt. Unter Ansatz der jeweiligen Netto-Grundfläche der energetisch relevanten Landesgebäude mit Potenzial zur Verringerung des Energieverbrauchs ergeben sich durchschnittliche Kosteneinsparpotenziale beim Wärmeverbrauch i.H.v. 3,60 EUR/m² NGF*a und beim Stromverbrauch i.H.v. 6,80 EUR/m²NGF*a.

.

⁴⁰ Als witterungsbereinigter 3-Jahres-Wert basierend auf dem Verbrauch über drei zusammenhängende Jahre.

⁴¹ Auskunft des THÜLIMA, Februar bis April 2013.

Auf dieser Datengrundlage soll in einer **Hochrechnung** das theoretisch mögliche Kosteneinsparpotenzial für den Gesamtgebäudebestand des Freistaates grob abgeschätzt werden. Für die **Hochrechnung** wurden die Daten der 218 Gebäude nach den 9 Gebäudearten des Bauwerkszuordnungskatalogs (BWZK) strukturiert ausgewertet. Getrennt für den Wärme- und den Stromverbrauch wird für die einzelnen BWZK-Gruppen das durchschnittliche **Energie- sowie Kosteneinsparpotenzial** abgeleitet. Dazu wurden die Einsparpotenziale der einzelnen Objekte bezogen auf ihre Netto-Grundfläche ermittelt und für die 9 BWZK-Hauptgruppen kumuliert. Der Prognose wird die Annahme zugrunde gelegt, dass eine Gleichverteilung der Einsparpotenziale innerhalb der BWZK-Gruppen vorliegt. Dies stellt eine von mehreren Vereinfachungen dar, die bei der Hochrechnung einschränkend zu beachten sind.⁴²

Aufgrund keiner oder geringer Gebäude dieser Art in der Untersuchungsmenge konnten für vier der neun BWZK-Hauptgruppen keine Ableitungen getroffen werden: Keines der 218 Gebäude war dem Gesundheitswesen (BWZK 3.000) zuzuordnen, sodass für diese Kategorie kein Durchschnittswert ausgewiesen werden kann. Ebenfalls aufgrund von jeweils nur drei oder weniger Gebäuden bei der Hochrechnung **außen vor gelassen** wurden die Sportbauten (BWZK 5000), die Bauwerke für Produktion, Werkstätten etc. (BWZK 7000) sowie die Bauwerke für technische Zwecke (BWZK 8000). Im Gesamtbestand (938) sind insgesamt 266 Gebäude (12 % der Netto-Grundfläche) dieser Gebäudearten enthalten. Möglicherweise bei diesen Gebäuden gegebene Einsparpotenziale bleiben bei der Hochrechnung unberücksichtigt.

				NaGET (2	218)		Gesa	amtportfolio	(938)
						Kosten-			
		Anzahl	Flächen-	Flächen-	Durchschnitt				Hoch-
		Gebäude	anteil	anteil	Einspar-	potenzial			rechnung
		je BWZK-	I Cahauda		potenzial	Wärme	Anzahl		Kosten-
		Gruppe	mit	mit	Wärme der	der Geb.	Gebäude		einspar-
		[-]	Potenzial	Potenzial	Gebäude mit	mit	je BWZK-		potenzial
BWZK		[-]	[m² NGF]	[%]	Potenzial	Potenzial	Gruppe	NGF	Wärme
Nr.	BWZK-Bezeichnung				[kWh/m²a]	[EUR/m²a]	[-]	[m²]	[EUR/a]
1000	Parlament-,Gerichts-,Verwalt.geb.	99	222.092	59%	55	3,79	288	649.995	1.457.361
2000	Gebäude für wissenschaftl. Lehre	79	143.379	45%	67	4,65	206	476.194	991.048
3000	Gebäude des Gesundheitswesens	0	0	k.A.	k.A.	k.A.	4	3.261	k.A.
4000	Schulen	10	13.926	44%	30	2,11	33	48.738	45.248
5000	Sportbauten	3	1.895	k.A.	k.A.	k.A.	23	30.205	k.A.
6000	Gemeinschaftsstätten	14	38.661	68%	37	2,60	59	127.799	227.237
7000	Gebäude für Produktion, etc.	3	902	k.A.	k.A.	k.A.	199	157.071	k.A.
8000	Bauwerke für technische Zwecke	1	139	k.A.	k.A.	k.A.	40	12.457	k.A.
9000	Gebäude anderer Art	9	51.053	82%	18	1,23	86	170.935	172.226

218 472.047 938 1.676.655 2.893.120

Abbildung 26: Kosteneinsparpotenzial beim Wärmeverbrauch.

Quelle: Eigene Darstellung.

-

Weitere Vereinfachungen sollen kurz benannt werden: Z.B. stellt die Verwendung von Mittelwerten (z.B. der Verbräuche) eine grobe Vereinfachung dar. Gerade die Einsparungen durch energetische Sanierungen werden dadurch erst nach drei Jahren voll abgebildet. Brutto-Grundflächen wurden mit Hilfe von Umrechnungsfaktoren in die benötigten Netto-Grundflächen umgewandelt, worin Unsicherheiten begründet sind. Darüber hinaus fließen, wie bereits grundlegend festgestellt, keine Angaben über das Baujahr, die Wärmedämmeigenschaften der Fassade etc. in die Analysen ein, wodurch sich weitere Unterschiede zu den realen Einsparmöglichkeiten ergeben können. Des Weiteren ist für eine BWZK-Gruppe (z.B. 1000), für die kein Vergleichswert verfügbar und keine höhere Ebene mit Vergleichswert gegeben ist, entsprechend der Richtlinie des BMVBS pauschal auf die BWZK-Gruppe 1300 und deren Vergleichswert ausgewichen worden. Auch in dieser Vereinfachung sind Unsicherheiten des Ergebnisses begründet.

Auf dieser Basis wurde das theoretisch mögliche Kosteneinsparpotenzial für den Gesamtgebäudebestand abgeleitet. Abbildung 26 ist zu entnehmen, dass für den **Wärmeverbrauch** entsprechend der skizzierten Vorgehensweise als grobe Schätzung von einem Kosteneinsparpotenzial i.H.v. rund **2,9 Mio. Euro p.a.** bezogen auf den betrachteten Teil des Gesamtbestandes (672 von 938) ausgegangen werden kann. Allein für die Parlaments-, Gerichts- und Verwaltungsgebäude (BWZK 1000) ergibt sich demnach ein Einsparpotenzial von rund 1,5 Mio. Euro pro Jahr.

Beim **Stromverbrauch** kann das Kosteneinsparpotenzial für das Gesamtportfolio auf rund **6,9 Mio. Euro p.a.** beziffert werden. Die umfangreichen Potenziale zur Reduzierung des Stromverbrauchs führen demnach auch zu entsprechend hohen erreichbaren Kosteneinspareffekten. Gemäß Abbildung 27 ist allein für die Wissenschaftsgebäude (BWZK 2000) von einer theoretisch erreichbaren Einsparung i.H.v. rund 2,6 Mio. Euro pro Jahr auszugehen. Der Unterschied zur Kosteneinsparhöhe beim Wärmeverbrauch ist neben der absoluten Höhe an einsparbaren kWh auch auf den mehr als doppelt so hohen Energiebezugspreis zurückzuführen.

				NaGET	(218)		Gesa	amtportfoli	o (938)
BW <i>Z</i> K Nr.	BWZK-Bezeichnung	Anzahl Gebäude je BWZK- Gruppe [-]	Flächen- anteil Gebäude mit Potenzial [m² NGF]	anteil Gebäude mit Potenzial	Durchschnitt Einspar- potenzial Wärme der Gebäude mit Potenzial [kWh/m²a]	potenzial Wärme der	Anzahl Gebäude je BWZK- Gruppe [-]	NGF [m²]	Hoch- rechnung Kosteneins par- potenzial Strom [EUR/a]
1000	Parlament-, Gerichts-, Verwalt.geb.	99	250.636	67%	31	4,67	288	649.995	2.025.639
2000	Gebäude für wissenschaftl. Lehre	79	196.596	61%	58	8,83	206	476.194	2.583.524
3000	Gebäude des Gesundheitswesens	0	0	k.A.	k.A.	k.A.	4	3.261	k.A.
4000	Schulen	10	12.332	39%	12	1,85	33	48.738	35.218
5000	Sportbauten	3	7.874	k.A.	k.A.	k.A.	23	30.205	k.A.
6000	Gemeinschaftsstätten	14	43.381	77%	76	11,65	59	127.799	1.141.232
7000	Gebäude für Produktion, etc.	3	7.798	k.A.	k.A.	k.A.	199	157.071	k.A.
8000	Bauwerke für technische Zwecke	1	139	k.A.	k.A.	k.A.	40	12.457	k.A.
9000	Gebäude anderer Art	9	55.191	88%	47	7,25	86	170.935	1.095.703
		218	573.947				938	1.676.655	6.881.316

Abbildung 27: Kosteneinsparpotenzial beim Stromverbrauch.

Quelle: Eigene Darstellung.

Auf der Basis der verwendeten Daten und der gewählten starken Vereinfachungen beläuft sich das geschätzte theoretische **Kosteneinsparpotenzial** für Wärme und Strom über alle betrachteten energetisch relevanten Gebäude des Freistaates Thüringen auf eine Summe i.H.v. rund **9,8 Mio. Euro p.a.** Bezugnehmend auf die Energiekosten des Freistaates Thüringen für die Versorgung seiner landeseigenen Gebäude mit Wärme und Strom i.H.v. rund 35 Mio. Euro⁴³ entspricht dies einer für möglich zu erachtenden **Kosteneinsparung von rund 28 %.**

Ob dieser **theoretische Wert** tatsächlich erreichbar ist, muss an dieser Stelle offen bleiben. Die dafür nötigen detaillierten Untersuchungen der Gebäudesubstanz, der Haustechnik etc. sind gerade nicht Inhalt einer energetischen Potenzialanalyse und i.d.R. nur separat für einzelne Gebäude sinnvoll. Auch Aussagen zur Wirtschaftlichkeit erforderlicher energetischer Sanierungen lassen sich erst in einem zusätzlichen Analyseschritt treffen.⁴⁴

⁴³ Vgl. zu den Energiekosten des Freistaates Thüringen den Abschnitt 4.1.

⁴⁴ Vgl. die schrittweise Vorgehensweise zur Optimierung des Zeit- und Kostenaufwandes einer energetischen Potenzialanalyse in Abschnitt 1.5.

Nachdem ein Überblick über den Gesamtbestand gegeben wurde, soll noch einmal genauer auf die vier flächenmäßig größten Gebäude eingegangen werden. Der hohe Einfluss dieser Objekte auf das Gesamtportfolio bestätigt sich bei der Analyse der Energiekosten. Entsprechend Abbildung 28 würde eine Reduzierung des Wärmeverbrauchs auf den zugehörigen Vergleichswert der jeweiligen Gebäude eine jährliche Einsparung i.H.v. rund 500 kWh/a bedeuten. Viel entscheidender ist aber die mögliche Einsparung beim Stromverbrauch i.H.v. rund 5,0 MWh/a. Bei Annahme der angegebenen Wärmeund Strompreise entspricht dies überschlägig einer jährlichen Kostenersparnis i.H.v. rund 800.000 Euro pro Jahr. Damit beläuft sich der Anteil der vier flächenstärksten Objekte am Gesamteinsparpotenzial über alle untersuchten Gebäude (672 von 938) auf rund 8 % (800.000 Euro /9,8 Mio. Euro).

Ob diese Erwartungswerte realisiert werden können, ist in einer vertiefenden (Fein-)Analyse zu prüfen. ⁴⁵ Die hohe potenzielle Einsparsumme ist zudem zur Größe der Objekte (jeweils > 17.000 m² NGF) ins Verhältnis zu stellen. Gleichwohl zeigt das Beispiel die Dimension der möglichen Einsparungen auf.

lfd. Nr.	Energie- bezugs- fläche [m²]	Einspar- potenzial Wärme [kWh/(m²a]	Einspar- potenzial Wärme [kWh/a]	Energie- preis Wärme [EUR/kWh]	Kosten- einspar- potenzial Wärme [EUR/a]	Einspar- potenzial Strom [kWh/(m²a]	Einspar- potenzial Strom [kWh/a]	Energie- preis Strom [EUR/kWh]	Kosten- einspar- potenzial Strom [EUR/a]	GESAMT Kosten- einspa- potenzial [EUR/a]
9	18.622	16	298.385	0,0696	20.768	61	1.132.638	0,1531	173.407	194.174
11	27.267	0	0	0,0696	0	51	1.397.502	0,1531	213.957	213.957
64	23.393	0	0	0,0696	0	61	1.438.134	0,1531	220.178	220.178
255	17.565	12	207.454	0,0696	14.439	61	1.065.164	0,1531	163.077	177.515
			505 839		35.206		5.033.438		770.619	805.826

Abbildung 28: Kosteneinsparpotenziale für vier ausgewählte Objekte.

Quelle: Eigene Darstellung.

Ist eine **Priorisierung** der Objekte nach den einsparbaren Kosten für Wärme und Strom gefragt, wäre Gebäude Nr. 64 vor Nr. 11 für weitere Untersuchungen auszuwählen, wobei allerdings der geringe Abstand zwischen den vier Objekten zu beachten ist. In Bezug zum untersuchten Gesamtportfolio zeigt sich, dass die vier Gebäude zu den TOP 7 der höchsten einsparbaren Gesamtkostenanteile zählen und sich damit alle für eine vertiefende Analyse anbieten. Dies gilt insbesondere für die Zielstellung, dass möglichst wenige Objekte mit großem Einfluss auf den Gesamtenergieverbrauch des Gebäudeportfolios ausgewählt und hinsichtlich energetischer Optimierungsmöglichkeiten geprüft werden sollen.

Die für die einzelnen Objekte als realisierbar eingeschätzten Energiekosteneinsparungen geben Hinweise auf das **finanzielle Budget**, das für eine wirtschaftliche Durchführung energetischer Sanierungsmaßnahem zur Verfügung steht. Liegen konkrete Kostenansätze für bauliche und technische Energieeinsparmaßnahmen vor, lassen sich aus der Gegenüberstellung Schlussfolgerungen zur Wirtschaftlichkeit der energetischen Sanierungsmaßnahmen ableiten.

Zusammenfassend kann festgehalten werden, dass die bisherigen Analysen auf Portfolioebene wichtige Hinweise zu auffälligen Gebäuden geben können. Zur Untersetzung und Prüfung dieser Ergebnisse bietet sich eine **weitergehende Untersuchung** von Gruppen gleichartiger Gebäude oder anderwei-

-

 $^{^{45}}$ Vgl. zu den Untersuchungsebenen Abbildung 1 in Abschnitt 1.5.

tiger **Teilportfolien** an. Gegenüber gleichartigen Gebäuden lassen sich ungewöhnlich hohe Verbräuche noch deutlicher erkennen und z.B. von Auffälligkeiten abgrenzen, die durch die Besonderheiten der Gebäudeart erklärbar sind. Ein Vergleich der auffälligen Gebäude mit anderen des gleichen Nutzers bzw. Liegenschaftsverwalters wiederum ermöglicht z.B. konkrete Hinweise für eine anzustrebende Priorisierung energetischer Maßnahmen an einem Standort (z.B. einer Universität). Diesem Ansatz folgend werden zunächst die **Hochschulgebäude** der Universität Erfurt einer separaten Analyse unterzogen.

4.2 Auswertung für Gebäude eines Standortes am Beispiel der Universität Erfurt

Aufgrund einer heterogen ausgeprägten Belastbarkeit der Eingangsdaten bestand das Ziel einer weitergehenden Prüfung der Daten. Da sich dies für alle 218 betrachteten Gebäude als zu aufwendig und zeitintensiv darstellte, bestand das Ziel darin, Liegenschaftsverwalter anzusprechen, die über ein umfangreiches selbst genutztes und verwaltetes Gebäudeportfolio mit einer überdurchschnittlich guten Datenqualität verfügen. Diesen Anforderungen entsprachen insbesondere die Hochschulen mit ihren großen Gebäudebeständen. Durch die Mitwirkung der Thüringer Hochschulen bzw. deren Liegenschaftsabteilungen konnte die Datengrundlage für eine größere Anzahl an Gebäuden in vergleichsweise kurzer Zeit geprüft und weiter vervollständigt werden.

Hintergrund der Befragung der Liegenschaftsverwaltungen der Hochschulen war die Vermutung, dass die vor Ort erfassten und gepflegten Daten am stichhaltigsten und aktuellsten sind. Die Verantwortlichen betreuen die Objekte Tag für Tag vor Ort und kennen ihre Gebäude über viele Jahre. Lagen im Vorfeld unterschiedliche Angaben aus den einzelnen zur Verfügung stehenden Quellen vor, konnten diese nun mit den Angaben der örtlich Verantwortlichen abgeglichen werden. Auf diese Weise wurden Daten bestätigt bzw. korrigiert und noch nicht vorhandene Angaben ergänzt.

Die als Ergebnis der intensiven Zusammenarbeit mit den Hochschulen vorliegende Datenbasis ist geeignet, um die erfassten **Gebäude der Thüringer Hochschulen untereinander zu vergleichen**. Auch für die nicht betrachteten Hochschulgebäude können die Ergebnisse als Orientierung dienen. Die Untersuchungsebene der Gesamtheit der Hochschulgebäude⁴⁶ wurde im Rahmen des Forschungsprojektes NaGET nur im Überblick betrachtet. Hier besteht Potenzial für weiteren Erkenntnisgewinn. In der vorliegenden Untersuchung wurde die beispielhafte Betrachtung eines Hochschulstandortes gewählt. Mit Hilfe der Datengrundlage wurde eine vergleichende Verbrauchsanalyse der Gebäude der Universität Erfurt durchgeführt.

Der Einrichtung wird damit ein entsprechendes Informations- und Entscheidungsinstrument an die Hand gegeben, das dabei unterstützt, die Objekte mit hohem Handlungsbedarf auszuweisen und dementsprechende Defizite deutlich zu machen. Prinzipiell ist davon auszugehen, dass die Verantwortlichen die baulichen und energetischen Zustände ihrer Gebäude bereits gut kennen. Durch die quantitative Auswertung sowie den Vergleich mit zugehörigen Vergleichs- und Mittelwerten ist dennoch der Gewinn zusätzlicher Informationen wahrscheinlich, die dann in die Entscheidungsprozesse vor Ort bzw. in die Diskussion mit den übergeordneten Mittelgebern einbezogen werden können.

Bevor konkret auf die Gebäude der Universität Erfurt eingegangen wird, soll zunächst ein Überblick über den Gebäudebestand der Thüringer Hochschulen gegeben werden, der in großem, aber nicht vollständigem Umfang Gegenstand der Untersuchung war.

⁴⁶ Vgl. Ebene 2a in Abbildung 2.

4.2.1 Überblick zu den untersuchten Thüringer Hochschulgebäuden

Von den insgesamt 270 untersuchten Gebäuden wurden 120 Gebäude (44%) einer vertiefenden Prüfung unterzogen (vgl. Abbildung 29). Die Gebäude stammen alle aus dem Liegenschaftsbestand der Thüringer Hochschulen. Die Netto-Grundfläche (NGF) der untersuchten Gebäude liegt nahezu durchgehend über 1.000 m².

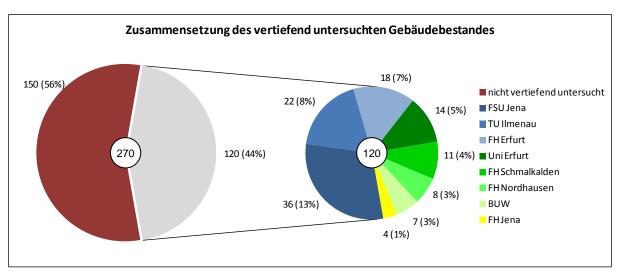


Abbildung 29: Zusammensetzung der vertiefend untersuchten Hochschulgebäude.

Quelle: Eigene Darstellung.

Welche Relation der untersuchte Gebäudebestand zum **Gebäudebestand der einzelnen Hochschulen** aufweist, zeigt die Abbildung 30. Zur Vereinfachung der Darstellung und zur Reduzierung auf die hier im Fokus stehenden Gebäude erfolgte die Erfassung aller Hochschulgebäude ab einer Brutto-Grundfläche (BGF) i.H.v. 500 m².

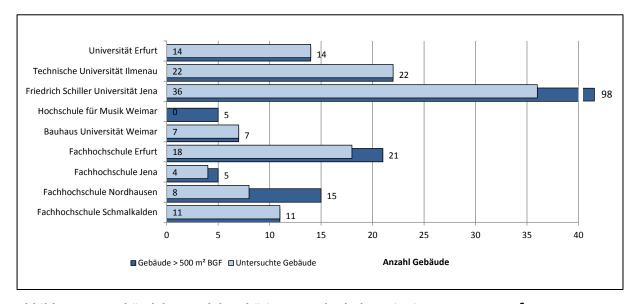


Abbildung 30: Gebäudebestand der Thüringer Hochschulen mit einer BGF > 500 m².

Quelle: Eigene Darstellung.

⁴⁷ Vgl. Abschnitt 2.1.

Mit dieser Eingrenzung sind den Thüringer Hochschulen insgesamt 198 Gebäude zuzuordnen, von denen in der **Untersuchung 120** und damit rund 60 % abgebildet sind. Bis auf die Hochschule für Musik Weimar sind aus allen weiteren acht staatlichen Hochschulen Gebäude vertreten. Die Anzahl der Gebäude und die Anteile am Gesamtbestand der Hochschulen sind unterschiedlich. Während bei der FH Schmalkalden mit elf Gebäuden der gesamte in Frage kommende Gebäudebestand Teil der Untersuchung ist, beläuft sich der Anteil bei der FSU Jena mit 36 untersuchten Gebäuden auf 37 %.

In der Abbildung 31 ist die Datenqualität für die 120 Gebäude angegeben, die der entsprechenden Prüfung durch die Liegenschaftsverwaltungen unterzogen wurde. Durch deren Einbeziehung liegt eine hohe Belastbarkeit der Daten vor, mit entsprechender Auswirkung auf die Einschätzung der Datenqualität. Zu 107 der 120 untersuchten Gebäude (91 %) liegen demnach Informationen in hoher Datenqualität vor (Kategorie 1).⁴⁸ Nur für acht Gebäude (7 %) war trotz zusätzlicher Prüfung keine ausreichende Qualität gegeben. Die Verlässlichkeit der Daten und ihrer Auswertungen kann insgesamt als sehr hoch eingeschätzt werden.

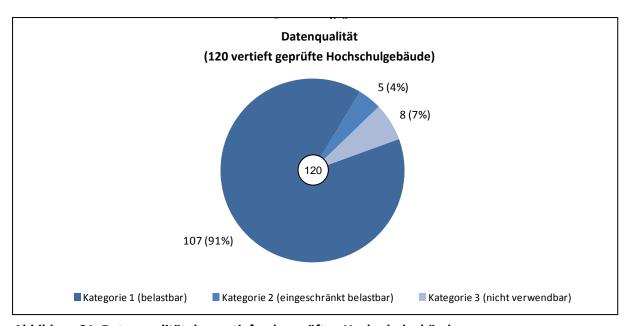


Abbildung 31: Datenqualität der vertiefend geprüften Hochschulgebäude.

Quelle: Eigene Darstellung.

4.2.2 Die Gebäude der Universität Erfurt

Der Immobilienbestand der Universität Erfurt umfasst **14 Gebäude**, die über eine BGF von mindestens 500 m² verfügen. **Alle Gebäude** wurden in die vorliegende Untersuchung einbezogen. In der Abbildung 32 wurden einige ausgewählte Gebäudedaten zusammengestellt.

38

⁴⁸ Vgl. zur Differenzierung der Datenqualität in die Kategorien 1 bis 3 Abschnitt 2.5.

Nr.	Bezeichnung Gebäude	BWZK	Normtext BWZK	Baujahr	BGF	NGF	Energieausweis gebäudebezogen	VZ-Kategorie
164	Lehrgebäude 2	2000	Gebäude für wissen- schaftliche Lehre	1965	10.252	8.567	ja	VZ1
165	Audimax	2100	Hörsaalgebäude	1961	5.505	4.104	ja	VZ1
166	Lehrgebäude 1	2000	Gebäude für wissen- schaftliche Lehre	1953	11.150	8.600	ja	VZ1
167	Verwaltungsgebäude	1300	Verwaltungsgebäude	1965	7.301	6.341	ja	VZ1
168	Neue Mensa	6530	Mensen	1983	5.780	4.971	ja	VZ1
169	Wohnheim V (Hochhaus) bzw. Mitarbeitergebäu- de 1	6230	Studentenwohn- heime	1964	8.355	4.215	ja	VZ1
170	Mitarbeitergebäude 2	1300	Verwaltungsgebäude	1955	2.765	2.426	ja	VZ1
171	Nebengebäude	2210	Institutsgebäude 1	1975	1.487	1.257	ja	VZ1
172	Lehrgebäude 4	2000	Gebäude für wissen- schaftliche Lehre	1961	5.110	4.505	ja	VZ1
173	Mitarbeitergebäude 3	1300	Verwaltungsgebäude	1924	1.062	1.004	ja	VZ1
174	Internationales Begegnungszentrum	6300	Gemeinschafts- unterkünfte	1392	2.214	1.564	ja	VZ1
175	Sporthalle	5100	Hallen (ohne Schwimmhalle)	1988	2.924	2.649	ja	VZ1
176	Lehrgebäude III	2210	Institutsgebäude 1	1904	2.896	2.350	ja	VZ1
255	Bibliothek	9130	Bibliotheksgebäude	2000	18.503	17.565	ja	VZ1

Abbildung 32: Daten zu den Gebäuden der Universität Erfurt.

Quelle: Eigene Darstellung.

Zu allen Gebäuden konnten die Wärme- und Stromverbrauchswerte ausgewertet werden. Die Energieverbräuche lagen für den Betrachtungszeitraum 2006 bis 2010 vollständig vor. Alle der untersuchten Gebäude verfügen über eine gebäudegenaue Erfassung der Verbrauchsdaten, sodass den Daten eine hohe Belastbarkeit attestiert werden kann (VZ 1).⁴⁹

Der **Gesamtenergieverbrauch** für Wärme und Strom bewegte sich in den letzten Jahren auf einem **konstanten Niveau** (vgl. Abbildung 33). Gerade beim Stromverbrauch sind die Veränderungen nur sehr gering. Beim Wärmeverbrauch ist nach mehreren Jahren um 6 Mio. kWh/a im Jahr 2010 im Vergleich zum Vorjahr ein Anstieg um 18 % auf rund 7,2 Mio. kWh/a zu verzeichnen, der sich auf alle Gebäude gleichmäßig verteilt. Detaillierte Angaben zu den einzelnen Gebäuden können dem Anhang 2 entnommen werden.

_

⁴⁹ Vergleiche zur Klassifizierung der Verbrauchserfassung Abschnitt 2.4.

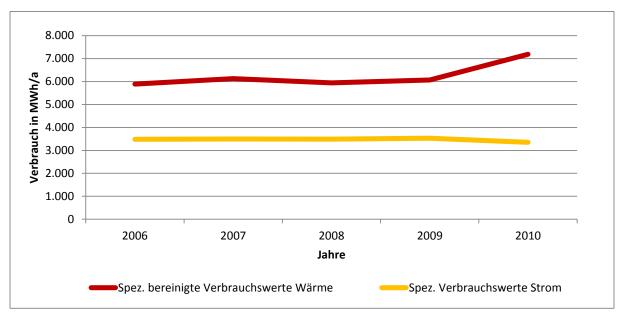


Abbildung 33: Entwicklung des Energieverbrauchs der Universität Erfurt.

Quelle: Eigene Darstellung.

4.2.3 Analyse des Wärme- und Stromverbrauchs

In der Abbildung 34 erfolgt eine Gegenüberstellung der Gebäude der Universität Erfurt. Aufgrund der unterschiedlichen Gebäudearten ist jedem Objekt der spezifische Vergleichs- und Mittelwert der jeweiligen BWZK-Kategorie zugeordnet. Stehen Investitionsmittel zur Verfügung, die explizit an einen bestimmten Liegenschaftsverwalter, z.B. eine Hochschule, gebunden sind, ermöglicht diese Form der Auswertung eine **standortspezifische Priorisierung** von Gebäuden.

Der Wärmeverbrauch ist bei neun von 14 Gebäuden besser als der Mittelwert der jeweiligen BWZK-Gruppe. Bei drei weiteren Gebäuden (Nr. 164, 165, 169) wird diese Marke nur knapp verfehlt. Sechs der 14 Gebäude weisen sogar einen Wärmeverbrauch auf, der die Vorgaben des Vergleichswertes noch unterschreitet. Ein erhöhtes Verbesserungspotenzial besteht lediglich bei den Objekten Nr. 176 und 170, die beide einen deutlich erhöhten Wärmeverbrauch aufweisen und daher zur Verbesserung der Energieeffizienz mit hoher Priorität einer vertiefenden Analyse zugeführt werden sollten.

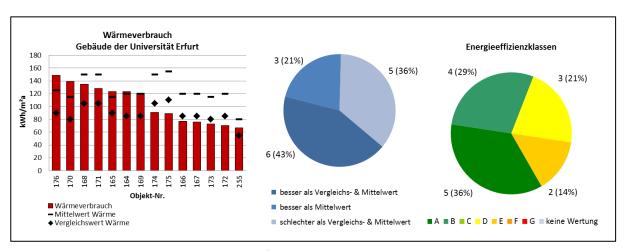


Abbildung 34: Gebäude der Universität Erfurt mit Wärmeverbrauch.

Quelle: Eigene Darstellung.

Insgesamt sind die vorliegenden Wärmverbräuche überwiegend auf einem **guten bis sehr guten Niveau**. Im Durchschnitt sind die Gebäude um 16 % besser als der zugehörige Mittelwert. Auch das Diagramm auf der rechten Seite der Abbildung 34 bestätigt dieses grundsätzlich positive Bild. Die Objekte weisen überwiegend die beiden besten Energieeffizienzklassen "A" und "B" auf. Die unterste vertretene Klasse ist "E", während das Spektrum bis "G" reicht.

Die Auswertung des **Stromverbrauchs** der Gebäude zeigt ein ähnliches Bild, allerdings treten mehr Extremwerte auf. Mit zehn von 14 gelingt es bei der überwiegenden Mehrheit der Gebäude den Mittelwert der zugehörigen BWZK-Gruppe zu unterschreiten. Darüber hinaus wird bei neun Gebäuden sogar der Vergleichswert unterboten. Bei dem Objekt Nr. 171 fällt ein besonders niedriger Stromverbrauch auf, der 75 % unter dem Vergleichswert liegt. Dieser Extremwert ist nicht unter normalen Bedingungen erreichbar. Es ist daher zu prüfen ob ggf. z.B. nur eine teilweise Nutzung (Leerstand) des Gebäudes vorliegt.

Dem entgegen überschreiten die Stromverbräuche der beiden Objekte Nr. 168 und 255 sehr deutlich die Vorgaben und sollten bzgl. dieses Kriteriums bei der Einleitung von Verbesserungen mit Priorität angegangen werden. Die hohen Stromverbrauchswerte dieser beiden Objekte sind auch im Diagramm auf der rechten Seite der Abbildung 35 durch ihre Einordnung in die Energieeffizienzklasse "G" zu erkennen. Es wird deutlich, dass die beiden Gebäude im Vergleich zum restlichen Gebäudebestand der Universität Erfurt deutlich abfallen.

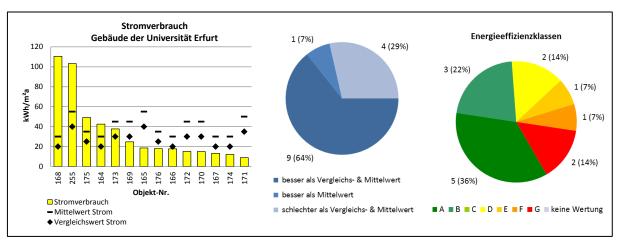


Abbildung 35: Gebäude der Universität Erfurt mit Stromverbrauch.

Quelle: Eigene Darstellung.

Hinsichtlich dem Wärme- und Stromverbrauch bieten sich unterschiedliche Gebäude für eine prioritäre Behandlung bei der Planung von Energieeffizienzmaßnahmen an. Daher wird in einem weiteren Schritt das aus **beiden Kriterien kombinierte Einsparpotenzial** ermittelt. Die Rangfolge soll auf der Grundlage wirtschaftlicher Gegebenheiten gebildet werden, sodass der Energiebezugspreis mit einbezogen wird. Die kWh Strom versursacht deutlich höhere Kosten als die kWh Wärme, was es in der Berechnung zu berücksichtigen gilt.

4.2.4 Standortspezifische Priorisierung für die Universität Erfurt

Basierend auf den Verbrauchsdaten können die Energieeffizienz-Potenziale der einzelnen Gebäude ermittelt und verglichen werden. Dazu wird die Differenz der Verbrauchswerte zum Vergleichswert der BWZK-Gruppe gebildet und mit dem Energiepreis multipliziert. Die Addition der Einsparmöglich-

keiten bei Wärme und Strom ermöglicht die Angabe der theoretisch einsparbaren Gesamtkosten pro Jahr. Theoretisch deshalb, da nicht bekannt ist, ob die gewählte Benchmark bei dem konkreten Gebäude ggf. sogar noch unterschritten werden kann. Möglich ist auch, dass aufgrund baulicher Besonderheiten etc. bei dem konkreten Gebäude der Vergleichswert nicht erreichbar ist. Als Anhaltspunkt kann der Vergleichswert als offizieller Richtwert dennoch wertvolle Hinweise liefern.

Für den konkreten Fall der **Universität Erfurt** sind die **Einsparmöglichkeiten** in der Abbildung 36 zusammengestellt. Die Universität Erfurt bezieht für ihre Gebäude Wärme zu einem durchschnittlichen Preis i.H.v. 9,8 ct/kWh und Strom im Durchschnitt für 17,9 ct/kWh.

Die Auswertung **bestätigt** die bisherige Einschätzung. Die Gebäude Nr. 255 und 168 weisen neben den höchsten Stromverbrauchswerten auch die höchsten Energieeinspar-Potenziale auf. Damit wird deutlich, dass die übergreifende kostenmäßige Betrachtung zu einer **Priorisierung von Gebäude mit hohem Stromverbrauch** führt. Hohe Wärmeverbräuche haben dagegen aufgrund des im Vergleich niedrigeren Bezugspreises und der eher geringfügigen Erhöhung eine geringe Bedeutung für die Gesamtkosten. Die beim Wärmeverbrauch auffälligen Gebäude 170 und 176 sind mit den Rängen 6 und 7 im Mittelfeld einzuordnen.

Nr.	Einspar- potenzial Wärme [kWh/(m²a]	Einspar- potenzial Wärme [kWh/a]	Energieprei s Wärme [EUR/kWh]	Kosten- einspar- potenzial Wärme [EUR/a]	Einspar- potenzial Strom [kWh/(m²a]	Einspar- potenzial Strom [kWh/a]	Energieprei s Strom [EUR/kWh]	Kosten- einspar- potenzial Strom [EUR/a]	Gesamt- kosten- einspar- potenzial [EUR/a]	Rangfolge
164	38	327.704	0,980	22.808	13	115.350	0,179	17.660	40.468	3.
165	33	137.481	0,980	9.569	0	0	0,179	0	9.569	8.
166	0	0	0,980	0	0	0	0,179	0	0	
167	0	0	0,980	0	0	0	0,179	0	0	
168	30	147.257	0,980	10.249	82	407.794	0,179	62.433	72.682	2.
169	36	150.904	0,980	10.503	0	0	0,179	0	10.503	5.
170	59	143.231	0,980	9.969	0	0	0,179	0	9.969	6.
171	23	48.220	0,980	3.356	0	0	0,179	0	3.356	9.
172	0	0	0,980	0	0	0	0,179	0	0	
173	0	0	0,980	0	16	15.789	0,179	2.417	2.417	10.
174	0	0	0,980	0	0	0	0,179	0	0	
175	0	0	0,980	0	38	101.631	0,179	15.560	15.560	4.
176	59	138.469	0,980	9.637	0	0	0,179	0	9.637	7.
255	12	207.454	0,980	14.439	61	1.065.164	0,179	163.077	177.515	1.

Abbildung 36: Rangfolge der Gebäude der Universität Erfurt nach Energieeinspar-Potenzial.

Quelle: Eigene Darstellung.

Die Gebäude der Ränge 1 bis 3 weisen gemeinsam ein Potenzial i.H.v. rund 290.000 Euro und damit 83 % des Gesamtpotenzials aller untersuchten Gebäude der Universität Erfurt auf! Da das Bibliotheksgebäude Nr. 255 mit rd. 177.000 Euro allein 50 % der wirtschaftlichen Einspareffekte p.a. auf sich vereint, sollte dieses mit hoher Priorität behandelt werden. Unter der Annahme, dass dieser Betrag nach entsprechender energetischer Sanierung jedes Jahr einspart werden kann, ist er als finanzielles Budget für energetische Sanierungsmaßnahmen interpretierbar. Sie die Kosten zur Realisierung der Maßnahmen bekannt, lässt sich die Amortisationszeit ermitteln. Diese gibt an, ob die notwendigen Investitionen schon frühzeitig nach wenigen oder erst nach 15 oder 20 Jahren durch die eingesparten Energiekosten ausgeglichen werden.

Um Kopplungseffekte zu nutzen, sollten zuerst solche Gebäude für Sanierungsmaßnahmen ausgewählt werden, die sowohl hinsichtlich des Wärme- als auch des Stromverbrauchs ein deutliches Ver-

besserungspotenzial aufweisen. Werden die entsprechend nötigen Verbesserungsmaßnahmen in einer koordinierten Gesamtsanierung durchgeführt, spart dies i.d.R. Kosten gegenüber einzelnen nacheinander erfolgenden Sanierungsschritten.

Ist auf der Grundlage der Auswertungen eine Priorisierung erfolgt, ist im **nächsten Schritt** eine **Feinanalyse** vorzusehen.⁵⁰ Mit dieser können die bisherigen vorwiegend auf Verbrauchsdaten basierenden Ergebnisse weiter untersetzt werden. Neben der Eingrenzung des Gebäudeportfolios auf eine Liegenschaftsverwaltung oder eine Einrichtung kann auch die Untersuchung ähnlicher Gebäude im Rahmen einer BWZK-Gruppe zu neuen Erkenntnissen führen.

4.3 Auswertung für BWZK-Gebäudegruppen am Beispiel 2200 und 9130

Als weitere Auswertungsmöglichkeit zwischen Einzelobjekt und Gesamtbestand bieten sich nach dem **Bauwerkszuordnungskatalog (BWZK)** geordnete Gebäudegruppen an. Dieser Katalog der Gebäudearten wurde von der ARGEBAU - Hochbauausschuss der Länder (LAG) erarbeitet. Dabei handelt es sich um Gebäude gleicher Nutzung, sodass die Aussagekraft eines Vergleichs entsprechend groß ist. Dieser Katalog wurde speziell zur Systematisierung öffentlicher Gebäude konzipiert. Er ist daher geeignet, den untersuchten Gebäudebestand des Freistaats Thüringen zu erfassen und zu strukturieren. Ende 2010 wurde auf der Bauministerkonferenz eine neue Version des Bauwerkszuordnungskatalogs beschlossen. Da die Vergleichs- und Mittelwerte des BMVBS bisher aber weiterhin nur für die bislang verwendeten BWZK-Nummern vorliegen, wird auch in dieser Studie daran festgehalten.

4.3.1 Strukturierung des Gebäudebestandes nach BWZK-Gruppen

Auf der ersten Ebene des Bauwerkszuordnungskataloges (BWZK) werden die neun **Gebäudearten** entsprechend der linken Seite der Abbildung 37 unterschieden. Für jede der Gebäudearten ist eine vertiefende Untergliederung auf die 2. Ebene (z.B. 9100 Gebäude für kulturelle und musische Zwecke) und teilweise bis auf die 3. oder sogar 4. Ebene (z.B. 1.311 Ministerien) möglich.⁵²

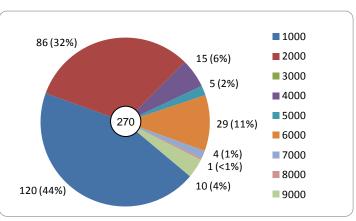


Abbildung 37: Übersicht über vorhandene BWZK-Gebäudegruppen.

Quelle: Eigene Darstellung.

⁵⁰ Vgl. zur Feinanalyse Abschnitt 4.4.

⁵¹ Vgl. Bogenstätter (2007). Der BWZK unterliegt einer stetigen Weiterentwicklung. In einzelnen Bundesländern wird teilweise mit modifizierten Untergliederungen gearbeitet. Ende 2010 wurde auf der Bauministerkonferenz eine neue Version des Bauwerkszuordnungskatalogs beschlossen. Vgl. dazu Bauministerkonferenz (2010).

 $^{^{\}rm 52}$ Vgl. zur BWZK-Struktur Anhang 5.

Auf der rechten Seite der Abbildung wird das Ergebnis der Anwendung des Bauwerkszuordnungskataloges auf den untersuchten Gebäudebestand des Freistaats Thüringen gezeigt. Demnach sind knapp die Hälfte der 270 aufgenommenen Gebäude Parlaments-, Gerichts- und Verwaltungsbauten (BWZK 1000). Mit ca. einem Drittel bilden die Lehr- und Forschungsgebäude (BWZK 2000) die zweitgrößte Gruppe. Den drittgrößten Anteil bilden mit 11 % die Wohnbauten und Gemeinschaftsstätten (BWZK 6000). In dieser Gruppe sind neben Gemeinschaftsunterkünften auch Studenten- und Sportlerwohnheime sowie Mensen zusammengefasst. Darüber hinaus sind bis auf Gebäude des Gesundheitswesens alle weiteren Gebäudetypen mit Objekten vertreten.

4.3.2 Institutsgebäude für Forschung und Lehre (BWZK 2200)

Eine der größten Gebäudegruppen innerhalb der 270 untersuchten Gebäude stellen die "Institutsgebäude für Lehre und Forschung" (BWZK 2200) dar. Insgesamt 33 der untersuchten Gebäude wurden dieser Kategorie zugeordnet und erfüllen die Anforderungen an die Datenqualität. Der Abbildung 38 ist eine Übersicht aller Objekte dieser Kategorie und deren Heizwärmeverbrauch zu entnehmen. Sie sind mit ihrer Objekt-Nummer auf der x-Achse aufgeführt.⁵³

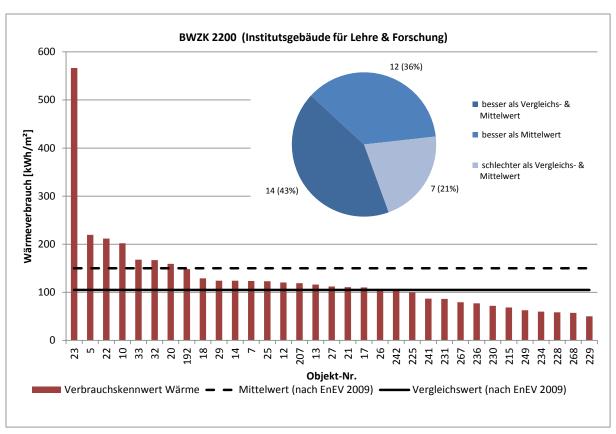


Abbildung 38: Heizwärmeverbrauch der Objekte BWZK 2200 im Vergleich.

Quelle: Eigene Darstellung.

In der Grafik sind gleichfalls der **Mittelwert** der BWZK 2200 mit 150 kWh/m²*a (als gestrichelte Linie) und der **Vergleichswert** mit 105 kWh/m²*a (als durchgehende Linie) angegeben.⁵⁴ Der Grafik ist zu

⁵³ Da die Vergleichswerte für die BWKZ 2200 nicht in Abhängigkeit der NGF angegeben sind (</> 3.500 m² NGF), ist eine diesbezügliche Unterscheidung beim Heizwärmeverbrauch nicht erforderlich. Vgl. weiterführend Anhang 5.

Mittelwert und Richtwert sind die Vergleichswerte auf der Basis der EnEV 2007 bzw. 2009. Vgl. Abschnitt 3.5, S. 40 ff.

entnehmen, dass der Heizwärmeverbrauch der überwiegenden Anzahl der Objekte (79 %) geringer und damit besser ausfällt als der Mittelwert. Ein ausgesprochen hoher Anteil von 14 Gebäuden bzw. 43 % erfüllt darüber hinaus den Vergleichswert.

Diese vergleichende Auswertungsvariante ist besonders geeignet, um auffällig hohe Verbrauchswerte im **Vergleich mit ähnlichen Gebäuden** zu erkennen. Im vorliegenden Fall betrifft dies in erster Linie die Gebäude Nr. 23, 5, 22 und 10. Aus dieser Gruppe der Hochverbrauer sticht das Gebäude Nr. 23 hervor, dessen Heizenergieverbrauch 5-fach über dem Vergleichswert liegt und damit zur Einleitung von sofortigen Detailuntersuchungen sowie einem möglichst schnellen Gegensteuern auffordert.

Sind Gebäude mit ungewöhnlich hohem Energieverbrauch identifiziert, können gezielt weitere Analyseschritte eingeleitet werden. Zunächst ist nochmals die Korrektheit der Datengrundlage zu überprüfen. Auch wenn die Datenqualität als hoch eingeschätzt wurde, sollte dieser Schritt zur Absicherung der Ergebnisse stets erfolgen. Neben den Verbrauchsangaben sind hier weitere Einflussfaktoren wie die Flächenangaben oder die zugeordnete Nutzungsart respektive BWZK-Gruppe einzubeziehen. Auch bisher vernachlässigte Nebenflächen mit einer anderweitigen Nutzung könnten den hohen Heizwärmeverbrauch begünstigen. Das Gebäude sollte aufgrund des Extremwertes möglichst kurzfristig einer detaillierteren Gebäudeanalyse im Rahmen einer Feinanalyse⁵⁵ unterzogen werden. Auf diese Weise können die Ursachen des ungewöhnlich hohen Verbrauchs erforscht werden und Gegenmaßnahmen eingeleitet werden.

Abbildung 39: Stromverbrauch der Objekte BWZK 2200 im Vergleich.

Quelle: Eigene Darstellung.

Eine gleichgelagerte Auswertung wurde auch beim **Stromverbrauch** durchgeführt. Die Ergebnisse sind in der Abbildung 39 dargestellt. Der Vergleichswert wird hier bei 13 und damit deutlich weniger

⁵⁵ Vgl. zur Feinanalyse Abschnitt 4.4.

Gebäuden erreicht als beim Heizwärmeverbrauch. Bei ca. der Hälfte der Gebäude wird auch der vom BMVBS herausgegebene Mittelwert der BWZK-Gruppe nicht erreicht.

Bauweisen und Nutzungsbedingungen der Gebäude einer BWZK-Gruppe sind ähnlich, was darauf schließen lässt, dass bei den Gebäuden mit hohem Stromverbrauch deutliche Verbesserungen möglich sind. Die Gebäude, die sich durch einen besonders niedrigen Stromverbrauch auszeichnen, können als "Good Practise Beispiele" herangezogen werden und ggf. auch als Ideengeber für Umgestaltung bei Hochverbrauchern dienen.

In jedem Fall sind für die Gebäude mit überhöhten Werten separat in **detaillierten Untersuchungen** geeignete Maßnahmen zur Reduzierung des Strombedarfs zu ermitteln, um das bestehende Verbesserungspotenzial auszunutzen. Inwieweit dies von Mitarbeitern der Liegenschaftsverwalter vor Ort oder im Rahmen einer Feinanalyse erfolgt, ist in Abhängigkeit der Qualifikationen des eigenen Personals, der Dringlichkeit der Detailanalysen und der zur Verfügung stehenden finanziellen Mittel zu entscheiden.

4.3.3 Bibliotheksgebäude (BWZK 9130)

In Ergänzung zur Untersuchung der Institutsgebäude für Forschung und Lehre wurden die **Bibliotheksgebäude** (**BWZK 9130**) für eine Gegenüberstellung ausgewählt. Es handelt sich dabei um eine BWZK-Gebäudegruppe der 3. Ebene. Dementsprechend sind vergleichsweise wenige Gebäude enthalten, für die aber dafür eine noch höhere Vergleichbarkeit angenommen werden kann. Wobei einschränkend gerade bei Bibliotheken zu beachten ist, dass es sich oft um großflächige Bauwerke mit hohem architektonischem Anspruch und hoher Individualität handelt.

Die **Heizwärmeverbräuche** der hier zu betrachtenden sechs Objekte dieser Gebäudekategorie zeigt Abbildung 40. Vier Gebäude liegen geringfügig, ein weiteres Gebäude deutlicher über dem Vergleichswert. Das sechste Gebäude Nr. 226 weist einen sehr geringen Heizwärmeverbrauch weit unter dem Vergleichswert auf.

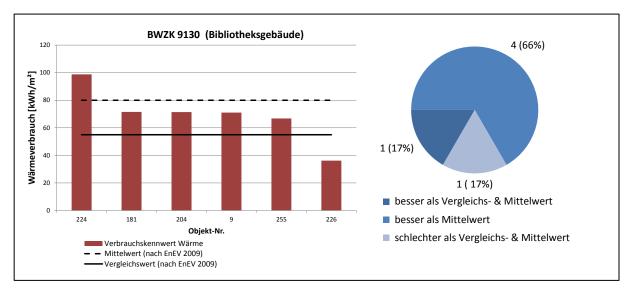


Abbildung 40: Heizwärmeverbrauch der Objekte der BWZK 9130 im Vergleich. Quelle: Eigene Darstellung.

⁵⁶ Vgl. die ff. Beispiele für die 1. Ebene: BWZK 9000 (Gebäude anderer Art), 2. Ebene: BWZK 9100 (Gebäude für kulturelle und musische Zwecke).

Beim **Stromverbrauch** liegen die sechs Gebäude deutlich weiter auseinander. Die zwei Gebäude Nr. 9 und 255 übersteigen den Vergleichswert um mehr als 100 %. Als einziges liegt das Gebäude Nr. 181 mit einem geringen Verbrauch unter dem Vergleichswert.

Der Vergleich mit den Benchmarks der BWZK-Gruppe wie auch der Vergleich unter den einzelnen Objekten macht deutlich, dass bei den Bibliotheksgebäuden sowohl hinsichtlich des Heizwärme- als auch hinsichtlich des Stromverbrauchs **Einsparpotenziale** bestehen.

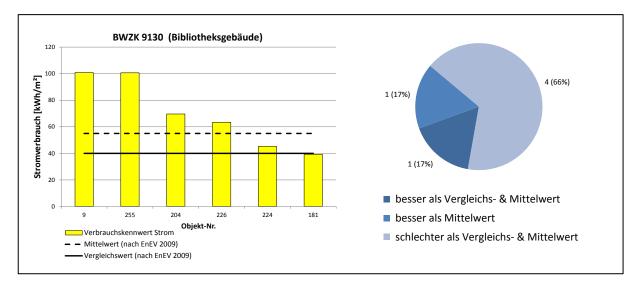


Abbildung 41: Stromverbrauch der Objekte der BWZK 9130 im Vergleich.

Quelle: Eigene Darstellung.

Um die Objekte ausfindig zu machen, die in beiden Kategorien deutliche Defizite aufweisen, bietet sich zusätzlich die Darstellung als **4-Quadranten-Matrix** an, deren prinzipieller Aufbau bereits im Abschnitt 4.1.3 erläutert wurde. Die Gebäude mit dem größten Sanierungspotenzial befinden sich alle im III. Quadranten (links unten) und sind dadurch schnell erkennbar. Bei der Auswahl dieser Objekte für bauliche Maßnahmen können in aller Regel neben den Einspareffekten beim Energieverbrauch zusätzlich Kopplungseffekte genutzt werden, wenn die Eingriffe gebündelt vorgenommen werden.

Für die untersuchten Bibliotheksgebäude des Freistaates Thüringen ergibt sich die Darstellung entsprechend der Abbildung 42. Mit Hilfe der Größe des Datenpunktes wird der Bezug zu den Kosten des Energieverbrauchs hergestellt. Je höher die aufaddierten Verbrauchskosten für Wärme und Strom, desto größer der Datenpunkt.

Der Abbildung ist zu entnehmen, dass die beiden Bibliotheken mit den Objekt-Nummern **9 und 255** die höchsten Gesamtkosten pro Jahr für den Bezug von Wärme und Strom aufweisen. Es ist anzumerken, dass es sich um zwei Gebäude mit einer NGF über 15.000 m² handelt, was die hohen Verbrauchskosten zu einem Teil erklärt. Beide Objekte weisen allerdings auch einen höheren Wärmeverbrauch und einen deutlich höheren Stromverbrauch pro m² auf, als dies durch den Vergleichswert für die Gebäudekategorie der Bibliotheken als angemessen einzuordnen ist.

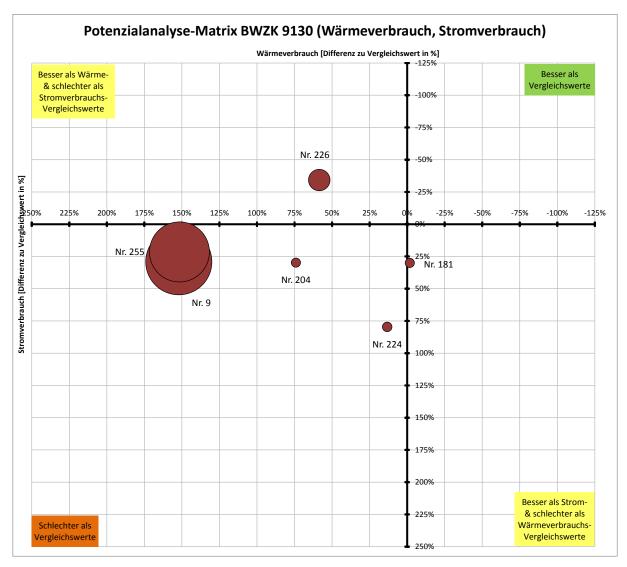


Abbildung 42: Verbrauchsorientierte Potenzialanalyse für BWZK 9130 (Bibliotheksgebäude) mit Größenkriterium Gesamtkosten pro Jahr.

Quelle: Eigene Darstellung.

Aus dieser Kombination von hohen Gesamtkosten und hohen Verbrauchswerten lässt sich schließen, dass Maßnahmen zur Steigerung der Energieeffizienz hier zu besonders großen Effekten führen, bezogen auf die Verringerung des Energieverbrauchs und die Reduzierung der dafür aufzubringen finanziellen Mittel. Entsprechend der stufenweisen Vorgehensweise wäre für diese beiden Objekte eine Feinanalyse zu empfehlen, um neben den Einspareffekten auch die dafür erforderlichen Investitionen abzuschätzen. Die Universitätsbibliothek Erfurt (Objekt-Nr. 255) wurde als eines der beiden auffälligsten Gebäude ausgewählt und auf diese Weise für eine Detailanalyse ausgewählt.⁵⁷

4.3.4 Weitere zur Untersuchung geeignete BWZK-Gruppen

Zusätzlich zu den Institutsgebäuden für Forschung und Lehre (BWZK 2200) und den Bibliotheksgebäuden (BWZK 9130) bieten sich weitere Gruppen der landeseigenen Gebäude des Freistaates Thüringen für diese Analyseform an. Diese Form der Auswertung ist für alle BWZK-Gruppen sinnvoll, bei denen eine gewisse Mindestanzahl an Objekten vorhanden ist. Dies trifft bei dem Gebäudebestand des Freistaates Thüringen insbesondere auf die folgenden BWZK-Gruppen zu: 1200 Gerichtsgebäude,

⁵⁷ Vgl. zur Feinanalyse der Universitätsbibliothek Erfurt Abschnitt 4.4.

1300 Verwaltungsgebäude, 2100 Hörsaalgebäude, 2400 Fachhochschulen, 6300 Gemeinschaftsunterkünfte und 6350 Mensen.

4.4 Feinanalyse für Einzelobjekte am Beispiel der Universitätsbibliothek Erfurt

Wurde ein Gebäude als energetisch auffällig erkannt, kann die grobe Einschätzung auf Basis von (Verbrauchs-)Kennwerten durch eine **Detailuntersuchung des Objektes** unterlegt werden. Dadurch lässt sich das bisherige Ergebnis prüfen und verfeinern. Der zeitliche und finanzielle Aufwand dieser Arbeiten ist i.d.R. beträchtlich. Aufgrund begrenzter Ressourcen sollten konkrete Anhaltspunkte für energetisches Optimierungspotenzial aus der Voranalyse vorliegen. Oder es sind aus anderen Gründen Baumaßnahmen geplant, in deren Vorfeld die Feinanalyse eines Gebäudes genutzt wird, um gezielt energetische Optimierungen mit vorzusehen (Kopplungseffekte).

Im Rahmen einer Feinanalyse erfolgt in jedem Fall eine **Ortsbegehung**. I.d.R. sind **Messungen** und Untersuchungen im bzw. am Gebäude durchzuführen. Die energetische Qualität des Gebäudes ist durch einen Energieberater zu ermitteln und die Schwachstellen aufzuzeigen.

Ziel einer solchen Untersuchung ist es festzustellen, welche **Ursachen** maßgebend sind für einen hohen Energieverbrauch. Darauf basierend sind konkrete **Handlungsempfehlungen** und ein technisches Konzept auf Vorplanungsniveau zu erforderlichen Maßnahmen an der Bausubstanz und der Anlagentechnik abzuleiten.

4.4.1 Ausgangssituation der Universitätsbibliothek Erfurt

Im Rahmen der Voranalyse wurde die Universitätsbibliothek Erfurt als ein Gebäude mit auffälligem Energieverbrauch identifiziert⁵⁸ und für eine beispielhafte Feinanalyse ausgewählt. Die nachstehende Tabelle gibt einen Überblick über die durchgeführten Untersuchungen und die im Ergebnis identifizierten auffälligen Gebäude, zu denen die Universitätsbibliothek Erfurt (Nr. 255) zählt. Die Differenzierung der Untersuchungsebenen folgt der zu Beginn der Untersuchung entwickelten Systematik. ⁵⁹

Untersuchungsebene	Abschnitt	Untersuchungsform	Auffällige Gebäude
Gesamtgebäudebestand (Ebene 1)	4.1.5 f.	Analyse der Höhe des Verbrauchs (Wärme und Strom) in Kombination mit dem Größenkriterium Energiebezugsfläche (NGF).	9, 11, 64, 255
Gebäude der Universität Erfurt (Ebene 2b)	4.2.3	Analyse der Höhe des Verbrauchs (Wärme und Strom) und des Abstandes zum Vergleichswert	Wärme: 176, 170 Strom: 168, 255
Gebäude der Universität Erfurt (Ebene 2b)	4.2.4	Analyse des Energieeinsparpotenzials nach dem Kriterium der Gesamtkosten für Wärme und Strom	255 , 168, 164, 175

⁵⁸ Vgl. zur Voranalyse der Universitätsbibliothek Erfurt Abschnitt 4.2.3. ff.

⁵⁹ Vgl. zu den Untersuchungsebenen 1, 2b und 2c den Abschnitt 1.5.

Gebäude der BWZK-	4.3.3	Analyse der Höhe des Verbrauchs (Wärme	Wärme: 224
Gebäudegruppe 9130		und Strom) und des Abstandes zum Ver-	Strom: 9, 225
(Ebene 2c)		gleichswert	3troin. 3, 223

Abbildung 43: Auffällige Gebäude als Ergebnis der Untersuchungen.

Quelle: Eigene Darstellung.

Mit einer Netto-Grundfläche von rd. 17.600 m² und den dafür aufzubringenden hohen Energiekosten wurden bei dem Gebäude deutliche Energieeinsparpotenziale erwartet. Im Ergebnis der Ausschreibung wurde die ENVISYS GmbH & Co. KG mit der energetischen Analyse des Gebäudes beauftragt.⁶⁰ Im Mittelpunkt der Untersuchung sollte der Wärme- und Stromverbrauch stehen.

Die Universitätsbibliothek Erfurt (UB Erfurt) wurde Ende der 1990er Jahre auf dem Campus der Universität Erfurt als Neubau errichtet. Das seit dem Jahr 2000 genutzte, öffentlich zugängliche Gebäude verfügt über eine Kapazität von 900.000 Bänden und 360 Leseplätzen. Zusätzlich sind in die Außenfassade 18 Lesekabinen integriert, sogenannte "Carrels", die ein ungestörtes intensives Lesen und Arbeiten ermöglichen.

Abbildung 44: Die Universitätsbibliothek Erfurt.

Quelle: Universität Erfurt.

Der drei- bis viergeschossige Baukörper mit einem Technik-Untergeschoss weist einen Bruttorauminhalt von rd. 79.000 m³ auf. Er ist geprägt durch seine flexible Großraumkonzeption der Freihandbereiche und drei zentral Lichthöfe mit Oberlicht. Die Lichthöfe sind auf einer Seite von einer Wandscheibe mit einer großzügigen Treppenanlage flankiert. Über Brücken und Öffnungen bestehen Sichtund Wegebeziehungen zur angelagerten Verwaltungsspange. Entlang der Lufträume finden die meisten Publikumsbewegungen statt. Trapezförmig dazu sind die Regalzonen angeordnet (vgl. Abbildung 44). Die gebänderten Putzfassaden weisen im Freihandbereich eine Höhe von 2,25 m auf, welche der Regalhöhe entspricht. Durch Oberlichtbänder gelangt das Tageslicht über die Regale hinweg ins Gebäude. Nach Norden ist die Bibliothek vollständig aufgeglast, um viel blendfreies Licht ins Gebäude hineinzuleiten.

Zur Erfassung der energetischen Ist-Situation konnten bezüglich des Wärme- und des Stromverbrauchs gebäudegenau gemessene Verbrauchskennwerte verwendet werden. In Abbildung 45 wer-

⁶⁰ Vgl. ENVISYS GmbH & Co. KG (2013).

den zudem die zugehörigen Vergleichswerte für die BWZK-Gruppe 9130 (Bibliotheksgebäude) angegeben, die deutlich überschritten sind.⁶¹

	Verbrauchskennwert	Vergleichswert nach EnEV 2009
	[kWh/(m²a]	[kWh/(m²a]
Wärme	67	55
Strom	101	40

Abbildung 45: Verbrauchswerte und Benchmarks für die Universitätsbibliothek Erfurt.

Quelle: Eigene Darstellung.

Während der Wärmeverbrauch den Vergleichswert noch vergleichsweise geringfügig übersteigt, liegt der Stromverbrauch sehr deutlich über der Vorgabe. ⁶² Aufgrund der Auffälligkeit der Werte und einer sehr hohen Stromgrundlast wurde das Gebäude zu einer detaillierten energetische Untersuchung ausgewählt.

4.4.2 Analyse des energetischen Ist-Zustandes

Im Rahmen der Feinanalyse wurden über einen Zeitraum von drei Monaten umfangreiche Messungen und Untersuchungen zur Erfassung der energetischen Qualität des Gebäudes durchgeführt. Einerseits wurde messtechnisch erfasst und rechnerisch ermittelt, wie genau sich die Energieströme verteilen, zweitens wurde bedarfsanalytisch der optimale Energieeinsatz erkundet und drittens die installierte Bau- und Anlagentechnik untersucht. Schwerpunkte der Analyse waren:

- **Gebäudehülle**: thermografische Untersuchung der Fassade mit besonderer Begutachtung des Daches;
- Beleuchtung: Erfassung des Leuchtenbestandes, der Leistungsdaten der Leuchten und der Betriebszeit; Messungen der Beleuchtungsstärke zur bedarfsgerechten Ausleuchtung
- Raumluft-Technik: Analyse der Betriebsdaten der Anlagen, inkl. der Untersuchung der Außenluft-Volumenströme; Bedarfsanalyse der Wärme- und Kälteabgabe-Einheiten
- Kälteerzeugung: Anlagenanalyse mit Fokus auf der Auslastung der Anlagen und des Elektroenergieeinsatzes
- **Gebäudeautomation**: Untersuchung der Steuer- und Regelungstechnik und deren Programmierung auf Optimierungspotenziale
- Raumluftqualität: Innenraummessung an neuralgischen Punkten im Gebäude, insbesondere im Freihandbereich der Bibliothek und in Gebäudeecken; Messung u.a. von Temperatur, Luftfeuchte, CO₂-Konzentration

Im Ergebnis lag eine Reihe von Auswertungen vor, aus denen die energetische Situation in dem Bibliotheksgebäude erkennbar wird. Zur visuellen Unterstützung wurden Energieflussdiagramme (Sankey-Diagramme) erstellt (vgl. Anhang 6), an Hand derer grafisch nachvollzogen werden kann, für welche Leistung wie viel der eingebrachten Energie aufgewendet wird und wie hoch die Energieverluste sind.

⁶¹ Vgl. Abschnitt 4.3.3.

⁶² Vgl. zur Einordnung der Verbrauchswerte Abschnitt 4.2.3 und Abschnitt 4.3.3.

4.4.3 Optimierungsvorschläge

Die durchgeführten Untersuchungen bildeten die Grundlage für eine **Schwachstellenanalyse**. Die resultierenden Befunde gaben Hinweise auf die Ursachen für den erhöhten Energieverbrauch. Wie den identifizierten Schwachstellen begegnet werden kann, wurde in **Optimierungsvorschläge** gefasst, die in diesem Abschnitt in Kurzform vorgestellt werden, zunächst für den Wärmebereich, danach für den Strombereich. Prinzipiell ist festzustellen, dass nicht ein einzelner Faktor den Auslöser für den hohen Energieverbrauch darstellt, sondern dieser durch eine Reihe von Einflüssen bewirkt wird.

Im Bereich **Wärme** wurde das Dach als auffällig eingeschätzt, da dieses undichte Stellen aufweist und dadurch vermutlich auch die Wärmedämmung nicht mehr voll funktionstüchtig ist. Bei der vorzusehenden Dacherneuerung wurde die Installation einer Photovoltaikanlage vorgeschlagen. Bezüglich der Fassade wurde festgestellt, dass die U-Werte der Verglasung auch die aktuellen Forderungen der Energieeinsparverordnung noch erfüllen. Allein eine Glasscheibe zeigte in der Thermografie-Untersuchung eine deutlich höhere Oberflächentemperatur als die umgebenden Bauteile. Dieser Befund konnte auf den falschen Einbau der Scheibe zurückgeführt werden, dessen Korrektur empfohlen wird.

Ein weiterer Anhaltspunkt für einzugrenzende Wärmeverluste wurde im **Eingangsbereich** des Gebäudes ausgemacht. Die Anordnung des vorhandenen Windfangs wurde als Schwachstelle benannt und eine Vergrößerung inklusive Einbau einer zusätzlichen Windbarriere vorgeschlagen.

Bei der Wärmeabgabe und -verteilung wurde diagnostiziert, dass im Vergleich zu Richtwerten überhöhte Außenluftvolumenströme bestehen. Eine Drosselung würde die Lüftungswärmeverluste deutlich reduzieren. Des Weiteren wurde bemerkt, dass der Luftschleier im Eingangsbereich der Bibliothek mit niedrigeren Temperaturen arbeitet als vorgesehen. Der Einschätzung der Gutachter nach könnte durch einen Erhöhung der Vorlauftemperatur die Wirksamkeit des Luftschleiers verbessert und Zugerscheinungen eingedämmt werden. Als weiterer Punkt wird aufgrund der schnellen technischen Entwicklung der letzten Jahre empfohlen, die bestehenden Heizungspumpen gegen Hocheffizienzpumpen auszutauschen. Darüber hinaus wurde allgemein empfohlen, die Heizkörperventile im Gebäude auf Funktionstüchtigkeit zu prüfen und einen hydraulischen Abgleich der Heizkreise durchzuführen.

Die Analyse der **Wärmeerzeugung** für das Gebäude ergab, dass die tatsächliche Wärmelast von bis zu 650 KW deutlich unter der Anschlussleistung der Fernwärmeübergabestation (960 KW) liegt und diese Überkapazität abgebaut werden könnte. Dabei sollte auch eine Anpassung des Wärmetauschers erfolgen. Zudem wurde angeregt die Funktionstüchtigkeit und die Einstellungen des Übergabeventils für die Fernwärme zu überprüfen und hier ggf. eine hydraulische Schaltung vorzusehen, um unnötiges Takten zu verhindern.

Auch der **Stromverbrauch** wurde in dem Bibliotheksgebäude untersucht. Hierzu erfolgt eine Einteilung in den Strombedarf für die **Beleuchtung** und die Raumlufttechnik. Das Gebäude ist mit großen Glasflächen ausgestattet, sodass prinzipiell gute Voraussetzungen zur Nutzung von Tageslicht gesehen wurden. Da z.B. ein Teil des Lesebereich konstant verschattet ist und die natürliche Beleuchtung hier stärker genutzt werden könnte, wurden ein lokales manuelles Öffnen bzw. Schließen der Verschattungs-Elemente angeregt. Eine weitere Möglichkeit wurde darin erkannt, den bisher permanent geschlossenen Blendschutz durch ein Lichtlenksystem zu ersetzen. Damit würde das einfallende Tageslicht an der Decke reflektieren und für eine Grundausleuchtung sorgen.

Als besonders auffällig stellten sich die Beleuchtungszeiten dar. Der Anschaltzeitpunkt um 4.00 Uhr früh richtet sich nach dem Arbeitszeitantritt der Reinigungskräfte. Eine manuelle etagen- oder bereichsweise Schaltung ist derzeit nicht möglich. Eine entsprechende Nachrüstung lässt deutliche Einspareffekte erwarten.

Die **Regalbeleuchtung** ist derzeit von 4.00 Uhr bis 22.00 Uhr durchgehend im Betrieb. Da die Beleuchtungsaufgabe nur in der Zeit der Nutzung besteht, wenn ein Leser ein Buch entnimmt oder zurückstellt, wurde hier ein bedarfsgerechter Betrieb vorgeschlagen. Unter der Prämisse, den Nutzerkomfort nicht einzuschränken, wurde eine Präsenzregelung favorisiert. Als vorstellbar wurde eine Grundbeleuchtung von 30 % der Beleuchtungsstärke beschrieben, die bei Nutzung durch Bewegungsmelder an den Regalenden allmählich auf volle Lichtstärke ansteigt.

Weitere Optimierungsmöglichkeiten wurden an den **Lichtbäumen** erkannt, die im gesamten Gebäude Verwendung finden. Diese werden teilweise nach oben gerichtet zur indirekten Beleuchtung eingesetzt. Den Gutachtern zufolge erzeugt das indirekte Licht in einigen Fällen durch Reflexion an der Decke ausreichendes Licht (z.B. Büroräume), oft aber ist gar keine oder eine nur unzureichende Reflexionsfläche vorhanden (z.B. Foyer/ Atrium). Dort wo die Lichtbäume nicht individuell ein- und ausgeschaltet werden können, wurde eine entsprechende Nachrüstung angeregt. Auf diese Weise könnte nicht benötigtes oder störendes Licht durch das Personal selbst gelöscht und damit ein Beitrag zur Reduzierung des Stromverbrauchs geleistet werden. Speziell im Magazin wurde festgestellt, dass die Leuchtmittel gegen effizientere ersetzt und durch Präsenzmelder ergänzt werden könnten.

Einen Untersuchungsschwerpunkt bildete die **Raumlufttechnik**, da hier nicht nur der größte Strom-, sondern auch der größte Wärmebedarf entsteht. Als eine wichtige Ursache wurde der Luftvolumenstrom erkannt, der deutlich über dem Bedarf liegt. Durch einen reduzierten Außenluftwechsel wird gerade im Winter eine deutliche Reduzierung der Wärmeverluste erwartet. Ähnlich wie bei den Heizungspumpen wurde bei den eingesetzten Ventilatoren ein Austausch gegen moderne Geräte mit einer hohen Energieeffizienz als Optimierungsvorschlag unterbreitet. Zur Ausnutzung von ggf. bestehenden weiteren Einsparpotenzialen wurde auf die Überprüfung der Regelschemas der Anlagen insgesamt und der Raumlufttechnik im Magazin der Bibliothek im Besonderen hingewiesen. Zusätzlich wurden für die Kältetechnik allgemeine Vorschläge gegeben, die aber aufgrund der Untersuchung im Winter nicht durch Beobachtung bzw. Messung unterlegt werden konnten und daher einer weiteren Untersuchung bedürfen.

Als weiterer Analyseschritt wurden die erkannten Optimierungspotenziale mit zu erwartenden **Einspareffekten** und dafür **aufzubringender Investitionen** unterlegt und daraus eine Prognose zur Wirtschaftlichkeit und **Amortisation** abgeleitet.⁶³ Die einzelnen Vorschläge wurden zu Handlungsszenarien gebündelt.

4.4.4 Handlungsempfehlungen

Die Feinanalyse war darauf ausgerichtet, konkrete Umsetzungsvorschläge zu unterbreiten. Um die zügige Realisierung von Effizienzsteigerungen zu unterstützen, wurden die Optimierungsvorschläge entsprechend ihrer zeitlichen Umsetzbarkeit und Kapitalintensivität strukturiert. Es wurden vier Maßnahmenpakete gebildet, die jeweils eine sinnvolle Kombination von Maßnahmen darstellen und

-

⁶³ Vgl. die Übersicht mit den Einzelmaßnahmen im Anhang 7.

zudem eine **stufenweise Vorgehensweise** ermöglichen. So sind z.B. in dem Maßnahmenpaket (3) "Empfohlene Maßnahmen" viele der unter Variante (1) und (2) zusammengefassten Einzelschritte bereits enthalten.

- (1) Sofortmaßnahmen (max. gering-investiv): Diese Maßnahmen sind meist ohne Investitionen und kurzfristig umsetzbar,
- (2) Kurzfristig umsetzbare Maßnahmen (überwiegend gering-investiv): Hier finden sich Maßnahmen, die sich schnell amortisieren bzw. Reparaturmaßnahmen, die ohnehin fällig sind,
- **(3) Empfohlene Maßnahmen (Vorzugsvariante)**: Eine Kombination von Maßnahmen, die insgesamt lohnenswert sind und miteinander harmonieren,
- **(4) Komplettpaket**: Summe aller Maßnahmen, die möglich erscheinen, um den Energieaufwand zu minimieren, kurzfristige Wirtschaftlichkeit steht hier nicht vorn an.

Sofort umgesetzt werden kann vor allem die Reduktion des Außenluftvolumenstroms der Raumlufttechnischen Anlage im Freihandbereich der Bibliothek. Konkret bedeutet dies die Zurücknahme des Drucks in der Anlage um einen festen Wert. Allein durch diese Maßnahmen kann bereits ein großer Teil des realisierbaren Einsparpotenzials erreicht werden. Ebenfalls sofort entfaltet sich die Wirkung eines gestaffelten Einschaltens der Beleuchtung in den Ebenen und die Einstellung der Lichtbäume, sofern keine Schalterinstallation nötig ist. Darüber hinaus wurde auch die Reparatur der defekten und energetisch wirksamen Mängel am Dach, an der Glasscheibe, an den Thermostatventilen, an der Dämmung der Kühldecken und am Ventil des Magazin-Vorerhitzers als Sofortmaßnahme eingeordnet.

Die kurzfristigen Maßnahmen (2) vertiefen und präzisieren die meisten der Sofortmaßnahmen bei einem überschaubaren Investitionsrahmen. Zu dieser Kategorie werden manuelle Schaltmöglichkeiten, Betriebszeitenoptimierungen sowie Eingriffe in die Steuerung und Regelung zusammengefasst. Als besonders relevant werden hier aber der Umbau von Lichtinstallationen und der Einbau von Effizienzpumpen im Bereich Wärme und Kälte angesehen. Wegen der drohenden bauphysikalischen Schäden wird in dieses Maßnahmenpaket auch die Sanierung des schadhaften Daches eingeordnet, wobei hier zunächst nur die energetisch relevanten Verbesserungen angesetzt wurden.

Das **empfohlene Maßnahmenpaket** (3) stellt unter wirtschaftlichen Gesichtspunkten die Vorzugsvariante dar. Hier ist die Optimierung der Raumlufttechnik hin zu einem bedarfsgesteuerten variablen Volumenstrom enthalten, inklusive der dafür erforderlichen planerischen Überarbeitung. Auch ein Austausch der Ventilatoren ist hierbei vorgesehen. Bei der Beleuchtung wird zumindest die präsenzgesteuerte Teilabschaltung berücksichtigt. Es wird angeregt, ggf. zusätzlich die Installation zur Lichtdimmung vorzusehen, da diese zwar als kostenintensiv, aber gleichzeitig sehr wirtschaftlich einzuschätzen sein. Es wird eine Testphase für die Lichtdimmung empfohlen, um danach fundiert entscheiden zu können, wie wirtschaftlich die Umsetzung für die gesamte Universitätsbibliothek umsetzbar ist.

In der **Komplettvariante** (4) sind zusätzlich große Investitionen enthalten, die in ihrer Abstimmung aufeinander den Energiebedarf der Bibliothek auf ein Minimum (- 50 %) reduzieren. Die Wirtschaftlichkeit und die Amortisationsdauer der Maßnahmen wurden berücksichtigt, aber nachrangig behandelt. Besondere Würdigung findet die Nutzung regenerativer Energien, wie Absorptionskälte, Kraft-Wärme-Kälte-Kopplung sowie thermische und elektrische Solarnutzung. Eine größere Position stellt

zudem der bereits beim empfohlenen Maßnahmenpaket (3) angesprochene Umbau an den Regalleuchten mit Installation einer Lichtdimmung dar.

Für die vier Maßnahmenkombinationen ergeben sich spezifische Investitions- und Einspareffekte. Die erwarteten Investitionen leiten sich aus konkret eingeholten Angeboten, Tabellenwerten der Literatur und/ oder eigenen Projekterfahrungen der Gutachter ab. Auch die Höhe der erzielbaren Einsparungen und die daraus resultierende Wirtschaftlichkeit stellen Prognosen dar und unterliegen verschiedenen Einflussfaktoren. Als entscheidend für die Ermittlung der Einsparwirkung wurden diese Eingangsgrößen benannt:

- Derzeitiger und zukünftiger Energiepreis, bei dem auch die Anschlussgrößen und Staffeln eine wichtige Rolle spielen können,
- Kapitalverzinsung,
- Nutzungszeiten und Betrachtungszeiträume,
- Preissteigerungsraten.

Den eigenen **vereinfachten Berechnungen** nach VDI 2065 legten die Gutachter unter Bezugnahme auf die RL Bau Thüringen die folgenden **Annahmen** zugrunde:⁶⁴

Mittlerer Strompreisbezug: 0,18 €/kWh

Mittlerer Fernwärmebezugspreis: 0,09 €/kWh

• Mittlere Energiepreissteigerung pro Jahr: 4 %

Kalkulatorischer Zinssatz (Kapitalverzinsung): 5 %

• Betrachtungszeitraum: 20 Jahre

Unter den gesetzten Prämissen ergeben sich **Einsparungen** für die einzelnen Maßnahmenpakete, wie sie in Abbildung 46 zusammengefasst sind:

	Wärme				Strom				Gesamt-	
Maßnahmen- pakete	Verbrauch p.a.		Einsparung p.a.		Verbrauch p.a.		Einsparung p.a.		Einsparung p.a.	
	[MWh]	[EUR]	[MWh]	[EUR]	[MWh]	[EUR]	[MWh]	[EUR]	[EUR]	[%]
Ist-Situation	1.150	103.500	-	-	1.850	333.000	-	-	-	-
(1) Sofort	898	80.856	252	22.644	1.642	295.560	208	37.440	60.084	14
(2) Kurzfristig	724	65.151	426	38.349	1.512	272.077	338	60.923	99.272	23
(3) Empfohlen	631	56.790	519	46.710	1.150	207.007	700	125.993	172.703	40
(4) Komplett	1.288	115.965	-138	-12.465	755	135.862	1.095	197.138	184.673	42

Abbildung 46: Einsparungen der vier Maßnahmenpakete im Vergleich.

Quelle: ENVISYS (2013).

Der Mehrverbrauch an Wärme in der Komplettvariante (4)⁶⁵ ergibt sich aus dem zusätzlichen Wärmeverbrauch durch die thermisch angetriebene Kälteerzeugung. Vor der Umsetzung dieses Maß-

⁶⁴ Vgl. TMBLV (2011), S. 97.

⁶⁵ Vgl. den negativen Wert an Einsparungen in Abbildung 46.

nahmenpaket wird empfohlen, mit dem Energieversorger in Verhandlungen zu treten und für die sommerliche Fernwärme einen niedrigeren als den hier einheitlich angesetzten Preis zu vereinbaren (vgl. Abbildung 47).

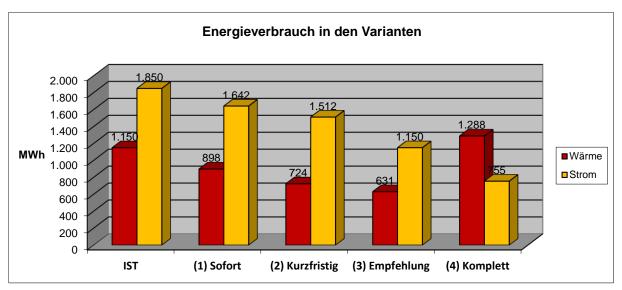


Abbildung 47: Vergleich der Maßnahmenpakete.

Quelle: ENVISIYS (2013).

Ausgehend von den erwarteten Gesamteinsparungen kann durch Gegenüberstellung mit den erwarteten Investitionen die **Amortisationszeit** ermittelt werden (vgl. Abbildung 48). Demnach sind die Kosten des Maßnahmenpaketes (1) bereits nach rund einem Monat durch Einsparungen erreicht. Auch die Pakete (2) und (3) amortisieren sich bereits kurz- bis mittelfristig in weniger als vier Jahren. Allein bei der Komplettvariante (4) ist davon auszugehen, dass die Einsparungen die Kosten erst längerfristig nach rd. 13 Jahren erreichen.

Maßnahmen- pakete	Investition [EUR]	Ersparnis p.a. [EUR]	Amortisation [a]	Barwert [TEUR]	Kapitalwert [ann. TEUR]
(1) Sofort	6.250	60.084	0,1	1.047	1.092
(2) Kurzfristig	301.150	99.272	3,2	1.729	1.489
(3) Empfohlen	610.650	172.703	3,7	3.008	2.528
(4) Komplett	2.121.650	184.673	12,8	3.217	1.150

Abbildung 48: Wirtschaftlichkeit der vier Maßnahmenpakete im Vergleich.

Quelle: ENVISYS (2013).

4.4.5 Schlussfolgerungen

Im Ergebnis bestätigt die Feinanalyse das Ergebnis aus der Voranalyse, wonach ein hohes Energieeffizienzoptimierungspotenzial bei dem Bibliotheksgebäude attestiert wird. In Ergänzung der vorherigen Untersuchungen auf Portfolioebene wurden nun auch die **Ursachen** der energetischen Auffälligkeit identifiziert sowie **Maßnahmen** zur Verbesserung benannt und mit wirtschaftlichen Kennzahlen unterlegt.

Die gewählte schrittweise **Vorgehensweise** mit zunehmendem Detailierungsgrad erweist sich damit als **zielführend und wirtschaftlich** sinnvoll. Daher bietet es sich an, den aufgezeigten stufenweisen Ansatz weiterzuführen und gezielt zusätzliche Objekte, die als Hochverbraucher identifiziert wurden, für eine Feinanalyse vorzusehen.

Mit den Ergebnissen der Feinanalyse wurden die Voraussetzungen geschaffen, kurz- und mittelfristig bauliche Maßnahmen gezielt einzuleiten. Zudem wurde durch nicht oder geringfügig investive Sofortmaßnahmen aufgezeigt, wie mit unmittelbarer Wirkung der Wärme- und Stromverbrauch zu senken ist. Die dadurch insgesamt eingesparten finanziellen Mittel werden für andere Maßnahmen frei und leisten einen längerfristigen Beitrag zur Entlastung des Haushaltes des Freistaates.

5. Fazit und Ausblick

Energetische Potenzialanalysen bilden einen **ersten Schritt** zur Einschätzung der energetischen Qualität eines Immobilienportfolios. Nachfolgende Detailuntersuchungen können damit nicht ersetzt, sondern vielmehr gezielt eingeleitet werden. Insbesondere durch das interne und externe Benchmarking der Verbrauchsdaten können mit begrenztem Aufwand grundlegende Erkenntnisse gewonnen werden.

Mit der Analyse des Energieverbrauchs können **Hochverbraucher** identifiziert und vertiefenden Analyseschritten zugeführt werden. Im Weiteren bietet sich eine Grundlage zur Ursachenforschung und daraufhin ggf. vorzusehender Verbesserungen. Dabei muss es sich nicht zwangsläufig um investive Maßnahmen handeln. Auch die Notwendigkeit zur Änderung des Nutzerverhaltens oder die Einstellung der Heizungs- und Lüftungsanlagen können am Ende der Untersuchungen stehen und wertvolle Hilfen darstellen.

Für die Entscheidungsträger der öffentlichen Hand steht mit der energetischen Potenzialanalyse ein Instrument zur Verfügung, dass diese bei der **Vorauswahl** von energetisch zu optimierenden und zu sanierenden Objekten unterstützt. Da detaillierte Untersuchungen zur energetischen Qualität eines Gebäudes kostenintensiv sind, sind sie i.d.R. nur für eine begrenzte Anzahl an Objekten vertretbar. Durch die Eingrenzung der Objekte wird eine gezielte Beauftragung von detaillierten Gebäudeanalysen möglich, was letztendlich zu einer Haushaltsentlastung beiträgt.

Darüber hinaus kann das gezeigte Vorgehen auch die Grundlage für den Aufbau eines energetischen **Portfoliomanagements** darstellen. Die eruierten Energieverbräuche und entsprechenden Rückschlüsse auf die energetische Qualität der Gebäude würden dann zur Ableitung von Investitions- und Desinvestitionsstrategien genutzt.

Neben dieser Gesamteinschätzung soll ein **Ausblick** gegeben werden, wie schrittweise die Weiterführung des bisher Erreichten speziell bei den landeseigenen Gebäuden des **Freistaates Thüringen** erfolgen kann.

5.1 Übertragbarkeit auf gesamten Gebäudebestand

Grundsätzlich bietet die geschaffene Datenbasis die Möglichkeit zur Erweiterung auf den gesamten Gebäudebestand des Freistaates Thüringen. Hinsichtlich der aufgezeigten Vorgehensweise zur Eruierung und Überprüfung der vorhandenen Gebäudedaten ist von einer Übertragbarkeit auf die weiteren 720 der 938 energetisch relevanten Gebäude auszugehen. Da aber bei diesen Gebäude nicht mehr auf die Vorarbeiten im Rahmen der Erstellung von Energieausweisen zurückgegriffen werden kann, ist tendenziell von einer dünneren Datenbasis und damit einem höhere Aufwand zur Generierung der erforderlichen Daten auszugehen.

Zur Umsetzung des Ziels bietet sich eine sukzessive Vorgehensweise an, bei der schrittweise weitere Gebäude in die Untersuchung aufgenommen werden. Aufgrund der vorliegenden vertiefenden Analyse zu 120 der insgesamt 198 Gebäude (60 %) Thüringer Hochschulen mit einer Brutto-Grundfläche > 500 m² wäre hier eine Ausweitung auf den **gesamten Hochschulgebäudebestand** gut vorstellbar. Von Vorteil wäre zudem, dass die Liegenschaftsabteilungen bereits mit dem Projekt vertraut sind. Eine andere Option stellt die Konzentration auf die bisher nicht genauer betrachteten 288 Parlaments-, Gerichts- und Verwaltungsgebäude (BWKZ 1000) dar. In dieser Gebäudegruppe konzentrieren sich

rund 30 % der energetisch relevanten Landesgebäude. Auch die 206 Gebäude für wissenschaftliche Lehre (BWZK 2000) bieten weiteres Untersuchungspotenzial. Dabei könnten die Erkenntnisse aus der vorliegenden Untersuchung zu den 33 Institutsgebäuden für Forschung und Lehre (BWZK 2200) einfließen.

Darüber hinaus ist auch die zukünftigen **gesetzlichen Anforderungen** Rechnung zu tragen. Die bisherigen Untersuchungen konzentrieren sich auf Gebäude mit über 1.000 m² BGF. Für diese Gebäude wurden aufgrund der gesetzlichen Verpflichtung bereits in der Vergangenheit Energieausweise erstellt. Da zukünftig die Grenze voraussichtlich auf 500 m² reduziert wird, ist perspektivisch für eine Reihe zusätzlicher Gebäude des Freistaats ein Energieausweis verpflichtend. Es bietet sich an, gerade auch diese Gebäude in die Potenzialanalyse einzubeziehen, da die erforderliche Datenanalyse im Zuge der gesetzlichen Änderung sowieso erforderlich wäre.

5.2 Einbau zusätzlicher Verbrauchszähler

Gebäudeinformationen sind auch für eine energetische Potenzialanalyse unverzichtbar, wobei der Umfang an erforderlichen Informationen gering ist im Vergleich zu Gebäudeanalysen unter Einbeziehung der Bauweise oder der verwendeten Werkstoffe etc. Die Verbrauchswerte zählen als **Voraussetzung** aller verbrauchsorientierten Auswertungsverfahren zu den unverzichtbaren Daten.

Um den Gebäudebestand des Freistaates Thüringen noch besser analysieren zu können, bedarf es daher der Installation von weiteren Verbrauchszählern für Wärme, Strom und Wasser. Die zusätzlichen Zähler sind erforderlich, um den Energieverbrauch möglichst von allen energetisch relevanten Gebäuden separat erfassen zu können.

Auswe	ertung	Qualifizie	rung E	nergieconti	olling							
	. April 201											
Nachrü	stung v	on Verbraud	chszähle	ern								
Tranc	LS-N		Gebl ▼	Objekt 🛂	Kennun	Zählerart <u>*</u>	Liegenschaft	Zählereinba	Zählersta	Abnahme		Einh *
1	11083	1108300006		BU. Weimar	WMZ1	WM	MS13 Verteiler 1	06.04.2011	0	27.01.2012	367,948	
1	11083	1108300006		BU. Weimar	WMZ2	WM	MS13 HK 10	05.04.2011	0	27.01.2012	34,182	
1	11083	1108300006		BU. Weimar	WMZ3	WM	MS13 HK 13	05.04.2011	0	27.01.2012	109,908	
1	11083	1108300005		BU. Weimar	WMZ5	WM	MS 15	12.04.2011	0	27.01.2012	31,046	
1	11083	1108300004		BU. Weimar	WMZ6	WM	MS 9	08.04.2011	0	27.01.2012	33,711	MWh
1	11083	1108300002		BU. Weimar	WMZ7	WM	MS 7a	11.04.2011	0	27.01.2012	63,345	MWh
1	11083	1108300002		BU. Weimar	WMZ8	WM	MS 7b	07.04.2011	0	27.01.2012	120,545	MWh
1	11083	1108300001		BU. Weimar	WMZ9	WM	MS 5	12.04.2011	0	27.01.2012	60,880	MWh
1	11083	1108300006		BU. Weimar	WMZ10	WM	MS13 HK 15 WWB	05.04.2011	0	27.01.2012	14,992	MWh
1	11083	1108300006		BU. Weimar	WMZ11	WM	MS13 HK 12	12.04.2011	0	27.01.2012	231,040	MWh
1	11083	1108300006		BU. Weimar	WMZ12	WM	MS13 HK 11	12.04.2011	0	27.01.2012	112,032	MWh
1	11083	1108300006		BU. Weimar	WMZ13	WM	MS13 HK 9	05.04.2011	0	27.01.2012	46,549	MWh
1	11083	1108300004		BU. Weimar	TWZ1	TW (Stadtwerke)	MS 9	Bestand	-	27.01.2012	79,580) m³
1	11083	1108300001		BU. Weimar	TWZ2	TW (Stadtwerke)	MS 5	Bestand	-	27.01.2012	146,110) m³
1	11083	1108300002		BU. Weimar	TWZ3	TW (Stadtwerke)	MS 7	Bestand	-	27.01.2012	538,620) m ³
1	11083	1108300005		BU. Weimar	TWZ4	TW (Stadtwerke)	MS15	Bestand	-	27.01.2012	88,250) m³
1	11083	1108300006		BU. Weimar	TWZ5	TW (Stadtwerke)	MS 13	Bestand	-	27.01.2012	587,000) m ³
1	11083	1108300005		BU. Weimar	EltZ1	EZ	MS 15	06.11.2011	0	27.01.2012	706,000	kWh
1	11083			BU. Weimar	EltZ2	EZ	MS 5 / 7	02.11.2011	0	27.01.2012	31.127,000	kWh
1	11083	1108300002		BU. Weimar	EltZ3	EZ	MS 7 Aufzug	02.11.2011	0	27.01.2012	426,000	kWh
1	11083	1108300001		BU. Weimar	EltZ4	EZ	MS 5	06.11.2011	0	27.01.2012	3.953,000	kWh
1	11083	1108300004		BU. Weimar	EltZ5	EZ	MS 9	07.11.2011	0	27.01.2012	3.578,000	kWh
1	11083			BU. Weimar	EltZ6	EZ	MS 5/7/9/13/15 gesamt	07.11.2011	0	27.01.2012	87.168,000	kWh

Abbildung 49: Installation von Verbrauchszählern in Gebäuden der Bauhaus-Universität Weimar.

Quelle: TMBLV.

Der Freistaat Thüringen hat bereits die Auswertung der Zählerinfrastruktur in den landeseigenen Gebäuden begonnen und einen Entwicklungsplan aufgestellt. Bis Ende 2012 wurden im Rahmen des Investitionsprogrammes "Qualifizierung Energiecontrolling in Landesliegenschaften" des TMBLV thüringenweit 200 neue Zähler installiert. Einen Überblick der Verbrauchszähler, die 2011/ 2012 in

Gebäuden der Bauhaus-Universität Weimar installiert wurden, gibt die Abbildung 49. Es ist geplant, die Ausbauarbeiten fortzusetzen.

Übergreifend besteht das Ziel, bis Ende 2015 alle energetisch relevanten Gebäude mit eigenen Messeinrichtungen für Wärme, Strom und Wasser auszustatten. Das ambitionierte Vorhaben wird in Zukunft die Verbrauchserfassung und -auswertung dieser Gebäude deutlich vereinfachen. Damit wird ein wichtiger Grundstein für dauerhaft zuverlässige Auswertungen und Prognosen gelegt.

Bei der Entscheidung darüber, welche Gebäude bei begrenztem finanziellem Budget zuerst mit separaten Zählern für Strom (Energie und Leistung), Wärme (Heizwärme, Kälte) und Wasser (Warmwasser, Kaltwasser) ausgestattet werden, sollten neben den Einbaukosten weitere Kriterien berücksichtigt werden. Wichtige Größen stellen z.B. die Verbrauchshöhe, die Anschlussleistung oder auch die Notwendigkeit zur Abrechnung mit Dritten dar. Zur Systematisierung und Erleichterung der Planung der Zählerinfrastruktur bietet sich die Orientierung an solchen definierten **Auswahlkriterien** an. Darüber hinaus sind die gesetzlichen Rahmenbedingungen zu beachten, aus denen sich künftig weitere Anforderungen ergeben können (z.B. EnEG, EnEV, Novellierung des Energiewirtschaftsgesetzes zur Liberalisierung des Messwesens).⁶⁶

5.3 Zentrales Datenmanagement

Derzeit erfolgt eine weitgehend separate Datenhaltung für Planung und Bau im TLBV und für den Betrieb durch das ThÜLIMA. Die Kompatibilität der einzelnen Datenbanksysteme ist nicht durchgängig gegeben. Dadurch werden der Datenaustausch und die Kommunikation erschwert.

Einen Lösungsweg stellt die Installation eines **zentralen Datenbanksystems** dar, das in der Lage ist, einem Gebäude entsprechende Daten über den gesamten Lebenszyklus zuzuordnen. Das bedeutet, dass sowohl die Informationen, die im Rahmen der Planung und Bauausführung entstehen, als auch die während der Nutzungsphase anfallenden Informationen aufgenommen werden können und auslesbar sind.

Mit PLANON ist im Freistaat eine **Liegenschaftsdatenbank** im Aufbau, die zukünftig die skizzierten Anforderungen der umfänglichen Datenintegration erfüllen kann. Wenn die Arbeiten zur Implementierung fertiggestellt sind, wird das System eine ideale Plattform zur Datenauswertung bieten, auch für energetische Potenzialanalysen. Um die enthaltenen Daten immer aktuell zu halten, bedarf es der Einbindung des vor Ort verantwortlichen Personals. Die Datenbank sollte von allen Einrichtungen übergreifend nutzbar sein, bei denen ein Bezug zu den Landesgebäuden besteht. Um eine zielgerichtete Nutzung der Datenbank zu gewährleisten, bietet sich die Einrichtung von strukturierten Zugriffsrechten an. Der Zugriff von Mitarbeitern kann auf diese Weise den Erfordernissen des jeweiligen Aufgaben- und Zuständigkeitsspektrums angepasst werden.

_

⁶⁶ Vgl. AMEV (2010), S. 13 ff.

Anhang 1: Gebäudedaten zu den vertiefend geprüften Hochschulgebäuden (Auszug)

ŗ.	LS/LG-Nr.	GebNr.	EMIS-GebNr.	BWZK	Normtext BWZK	Baujahr	BGF	NGF	Energieausweis Gebäude- bezogen	VZ-Kategorie
1	20387	4611	n/a	6300	Gemeinschaftsun- terkünfte	1981	5.820	4.947	ja	VZ1
2	20260	3456	n/a	1350	Rechenzentren	1972	1.548	1.362	ja	VZ1
3	20219	2511	n/a	2210	Institutsgebäude 1	1899	2.943	2.620	ja	VZ3
4	20219	2431	n/a	2100	Hörsaalgebäude	1953	2.562	2.255	ja	VZ1
5	20222	2411	n/a	2200	Institutsgeb. für Leh- re und Forschung	1900	3.547	3.157	ja	VZ1
6	20223	2451	n/a	2000	Gebäude für wissen- schaftliche Lehre	1880	4.194	3.691	ja	VZ1
7	20224	2421	n/a	2200	Institutsgeb. für Leh- re und Forschung	1899	1.707	1.519	ja	VZ1
8	20225	3261	n/a	2210	Institutsgebäude 1	1890	5.905	5.256	ja	VZ1
9	20215	1122	n/a	9130	Bibliotheksgebäude	1998	20.692	18.622	ja	VZ1
10	20471	4344	2047100001	2200	Institutsgeb. für Leh- re und Forschung	1956	3.046	2.711	ja	VZ2
11	20673	1831	n/a	2210	Institutsgebäude 1	1907	30.637	27.267	ja	VZ1
12	20237	4262	2023700002	2200	Institutsgeb. für Leh- re und Forschung	1901	3.663	3.260	ja	VZ1
13	20235	4131	2023500005	2200	Institutsgeb. für Leh- re und Forschung	1912	2.007	1.786	ja	VZ3
14	20239	1521	n/a	2200	Institutsgeb. für Leh- re und Forschung	1883	2.845	2.532	ja	VZ3
15	20573	341	n/a	1312	Versorgungsämter	1904	1.652	1.388	ja	VZ1
16	20223	1832	n/a	6530	Mensen	1998	9.148	8.325	ja	VZ1
17	20243	2311	n/a	2200	Institutsgeb. für Leh- re und Forschung	1953	3.201	2.849	ja	VZ2
18	20256	2251	n/a	2200	Institutsgeb. für Leh- re und Forschung	1929	2.981	2.653	ja	VZ3
19	20246	1111	n/a	1320	Verwaltungsgebäude höherer techn. ausstatt.	1909	15.238	13.105	ja	VZ3
20	20995	2231	2099500001	2200	Institutsgeb. für Leh- re und Forschung	1903	1.707	1.519	ja	VZ5
21	20852	2240	2058200011	2200	Institutsgeb. für Leh- re und Forschung	1951	5.089	4.529	ja	VZ1
22	20258	2241	n/a	2200	Institutsgeb. für Leh- re und Forschung	1902	3.239	2.883	ja	VZ2
23	20473	2441	2047300004	2200	Institutsgeb. für Leh- re und Forschung	1955	3.953	3.518	ja	VZ1
24	20473	2551	n/a	2210	Institutsgebäude 1	1905	2.281	2.030	ja	VZ1
25	20286	2221	n/a	2200	Institutsgeb. für Leh- re und Forschung	1962	2.049	1.824	ja	VZ3
26	20282	2341	2028200001	2200	Institutsgeb. für Leh- re und Forschung	1991	4.006	3.565	ja	VZ3
27	20291	1531	2029100001	2200	Institutsgeb. für Leh- re und Forschung	1959	6.607	5.880	ja	VZ1
28	20299	2211	n/a	2100	Hörsaalgebäude	1957	9.271	8.159	ja	VZ1

Ŋŗ.	LS/LG-Nr.	GebNr.	EMIS-GebNr.	BWZK	Normtext BWZK	Baujahr	BGF	NGF	Energieausweis Gebäude- bezogen	VZ-Kategorie
29	20302	1411	n/a	2200	Institutsgeb. für Leh- re und Forschung	1883	1.821	1.620	ja	VZ1
30	20304	4111	n/a	1300	Verwaltungsgebäu- de	1906	4.082	3.470	ja	VZ1
31	20331	4417	n/a	2210	Institutsgebäude 1	1928	1.572	1.399	ja	VZ3
32	20307	1341	n/a	2200	Institutsgeb. für Leh- re und Forschung	1990	3.516	3.129	ja	VZ3
33	20307	1321	n/a	2200	Institutsgeb. für Leh- re und Forschung	1905	1.387	1.234	ja	VZ1
34	20318	4378	n/a	2210	Institutsgebäude 1	1932	3.962	3.526	ja	VZ3
35	20319	1641	n/a	9120	Ausstellungsgebäude	1890	1.662	1.462	ja	VZ1
36	20327	1510	n/a	9120	Ausstellungsgebäu- de	1907	1.764	1.553	ja	VZ1
62	20629	1	2062900001	2400	Fachhochschulen	1987	3.427	n/a	ja	VZ1
63	20629	3	2062900002	2400	Fachhochschulen	1987	9.245	8.043	ja	VZ1
64	20629	5	2062900004	2400	Fachhochschulen	1987	26.889	23.393	ja	VZ1
164	11050	2	1105000002	2000	Gebäude für wissen- schaftliche Lehre	1965	10.252	8.567	ja	VZ1
165	11050	5	1105000005	2100	Hörsaalgebäude	1961	5.505	4.104	ja	VZ1
166	11050	7	1105000007	2000	Gebäude für wissen- schaftliche Lehre	1953	11.150	8.600	ja	VZ1
167	11050	12	1105000014	1300	Verwaltungsgebäu- de	1965	7.301	6.341	ja	VZ1
168	11050	13	1105000013	6530	Mensen	1983	5.780	4.971	ja	VZ1
169	11050	14	1105000018	6230	Studentenwohnhei- me	1964	8.355	4.215	ja	VZ1
170	11050	1	1105000011	1300	Verwaltungsgebäu- de	1955	2.765	2.426	ja	VZ1
171	11050	18	1105000008	2210	Institutsgebäude 1	1975	1.487	1.257	ja	VZ1
172	11050	19	1105000015	2000	Gebäude für wissen- schaftliche Lehre	1961	5.110	4.505	ja	VZ1
173	11050	21	1105000012	1300	Verwaltungsgebäu- de	1924	1.062	1.004	ja	VZ1
174	n/a	1	n/a	6300	Gemeinschaftsun- terkünfte	1392	2.214	1.564	ja	VZ1
175	11051	1	n/a	5100	Hallen (ohne Schwimmh.)	1988	2.924	2.649	ja	VZ1
176	11053	1	1105300001	2210	Institutsgebäude 1	1904	2.896	2.350	ja	VZ1
177	11061	1	1106100001	2400	Fachhochschulen	1903	5.832	4.658	ja	VZ1
178	11063	1	1106300001	1300	Verwaltungsgebäu- de	1956	3.044	2.140	nein	VZ3
179	11063	3	1106300003	2400	Fachhochschulen	1911	2.543	1.819	nein	VZ3
180	11064	1	1106400001	2400	Fachhochschulen	1975	4.164	3.446	ja	VZ1
181	11065	1	1106500002	9130	Bibliotheksgebäude	1918	5.051	4.370	ja	VZ1

Ŋ.	LS/LG-Nr.	GebNr.	EMIS-GebNr.	BWZK	Normtext BWZK	Baujahr	BGF	NGF	Energieausweis Gebäude- bezogen	VZ-Kategorie
182	11065	2	1106500001	2400	Fachhochschulen	1918	5.744	4.084	ja	VZ1
183	11065	3	1106500003	2400	Fachhochschulen	1918	5.335	4.641	ja	VZ1
184	11065	4	1106500005	2400	Fachhochschulen	1918	3.351	2.915	ja	VZ1
185	11065	5	1106500006	2400	Fachhochschulen	1918	5.527	4.878	ja	VZ1
186	11065	6	1106500008	6530	Mensen	1918	6.002	5.462	ja	VZ1
187	11065	7	1106500009	1320	Verwaltungsgebäu- de m. höherer techn. Ausstattung	1918	5.568	3.721	ja	VZ1
189	11081	1	n/a	5000	Sportbauten	1974	2.082	1.895	ja	VZ1
190	11083	10	1108300006	2100	Hörsaalgebäude	1957	3.638	3.201	n/a	VZ4
191	11084	4	1108400004	2100	Hörsaalgebäude	1911	4.033	3.549	n/a	VZ4
192	11085	1	1108500001	2200	Institutsgeb. für Leh- re und Forschung	1974	4.373	3.892	n/a	VZ4
201	11146	08-10	1114600006	6530	Mensen	1910	2.871	2.212	ja	VZ1
202	11146	12	1114600008	4000	Schulen	1953	3.161	2.296	ja	VZ1
203	11146	14/15	1114600010	1300	Verwaltungsgebäu- de	1910	1.327	1.051	ja	VZ1
204	11146	18	n/a	9130	Bibliotheksgebäude	1954	6.166	3.651	ja	VZ1
205	11146	19	1114600014	2100	Hörsaalgebäude	1970	3.206	2.829	ja	VZ1
206	11146	20	1114600015	2100	Hörsaalgebäude	1970	2.103	1.869	ja	VZ1
207	11146	25	1114600019	2200	Institutsgeb. für Leh- re und Forschung	1955	1.413	1.147	ja	VZ1
208	11146	28	1114600022	2300	Institutsgeb. f. For- schung u. Untersuch.	1956	2.169	1.928	ja	VZ1
212	11254	10	n/a	2300	Institutsgeb. f. For- schung u. Untersuch.	2005	n/a	2.062	ja	VZ1
213	11254	11	n/a	1300	Verwaltungsgebäu- de	1987	n/a	3.941	ja	VZ1
214	11259	1	1125900001	2210	Institutsgebäude 1	1902	2.452	1.972	ja	VZ1
215	11259	2	1125900002	2200	Institutsgeb. für Leh- re und Forschung	1959	5.258	4.766	ja	VZ1
216	11259	3	1125900008	7300	Werkstätten	1904	1.732	1.669	ja	VZ1
217	11259	4	1125900004	1300	Verwaltungsgebäu- de	1902	1.195	905	ja	VZ1
218	11259	7	1125900009	2400	Fachhochschulen	1979	5.163	3.479	ja	VZ1
219	11259	10	1125900003	2400	Fachhochschulen	2000	2.194	1.904	ja	VZ1
220	11259	11	1125900005	1300	Verwaltungsgebäu- de	1902	457	362	ja	VZ1
221	11259	13	1125900010	6530	Mensen	2000	1.861	1.679	ja	VZ1

Ŋŗ.	LS/LG-Nr.	GebNr.	EMIS-GebNr.	BWZK	Normtext BWZK	Baujahr	BGF	NGF	Energieausweis Gebäude- bezogen	VZ-Kategorie
222	11259	14	1125900011	2400	Fachhochschulen	2000	1.923	1.726	ja	VZ1
223	11259	15	1125900007	2100	Hörsaalgebäude	2000	6.204	5.588	ja	VZ1
224	11259	16	1125900006	9130	Bibliotheksgebäude	2000	4.062	3.830	ja	VZ1
225	11267	2	1126700001	2200	Institutsgeb. für Leh- re und Forschung	1977	2.978	1.765	ja	VZ1
226	11267	11	n/a	9130	_	1994	11.297	9.970	ja	VZ1
227	11267	13	1126700015	2300	Institutsgeb. f. Forschung u. Untersuch.	2000	3.443	1.989	ja	VZ1
228	11267	16	1126700007	2200	Institutsgeb. für Leh- re und Forschung	1963	3.459	3.079	ja	VZ1
229	11267	20	1126700009	2200	Institutsgeb. für Leh- re und Forschung	1988	4.439	3.951	ja	VZ1
230	11267	21	1126700010	2200	Institutsgeb. für Leh- re und Forschung	1957	12.625	11.236	ja	VZ1
231	11267	29	1126700012	2200	Institutsgeb. für Leh- re und Forschung	1962	14.060	12.513	ja	VZ1
232	11267	30	1126700013	2300	Institutsgeb. f. For- schung u. Untersuch.	1961	2.475	2.203	ja	VZ1
233	11267	31	1126700014	6530	Mensen	1972	5.716	5.030	ja	VZ1
234	11267	44	1126700028	2200	Institutsgeb. für Leh- re und Forschung	1992	3.380	3.008	ja	VZ1
235	11267	64	1126700030	2300	Institutsgeb. für For- schung und Unter- suchung	2001	5.548	4.938	ja	VZ1
236	11267	65	1126700031	2200	Institutsgeb. für Leh- re und Forschung	2003	6.409	5.704	ja	VZ1
237	11267	66	1126700032	2100	Hörsaalgebäude	2004	5.291	4.709	ja	VZ1
241	11286	1	n/a	2200	Institutsgeb. für Leh- re und Forschung	1885	4.880	4.299	ja	VZ1
242	11286	2	n/a	2200	Institutsgeb. für Leh- re und Forschung	1926	4.700	3.950	ja	VZ1
243	11286	3	n/a	2100	Hörsaalgebäude	2006	1.530	1.140	ja	VZ1
246	11378	4	n/a	9130	Bibliotheksgebäude	2005	1.677	1.510	n/a	VZ4
247	11380	3	1138000003	1300	Verwaltungsgebäu- de	1970	1.689	1.435	n/a	VZ4
249	11402	1	n/a	2200	Institutsgeb. für Leh- re und Forschung	1925	1.446	1.287	ja	VZ1
255	11050	20	1105000009	9130		2000	18.503	17.565	ja	VZ1
259	11065	12	n/a	1300	Verwaltungsgebäu- de	1940	n/a	1.024	nein	VZ1
260	11065	9	n/a	2200	Gebäude f. wissen- schaftl. Lehre	2008	n/a	6.502	nein	VZ1
261	11065	8	n/a	2400	Fachhochschulen	2008	n/a	2.629	nein	VZ1
262	11063	n/a	n/a	7300	Betriebs- und Werk- stätten	2000	n/a	902	nein	VZ3

Ŋ.	LS/LG-Nr.	GebNr.	EMIS-GebNr.	BWZK	Normtext BWZK	Baujahr	BGF	NGF	Energieausweis Gebäude- bezogen	VZ-Kategorie
263	11063	n/a	n/a	2300 / 7100	Institustgebäude für Forschung und Untersuchung oder ggf. land- und forstwirtschaftliche Produktionsstätten	2000	n/a	2.171	nein	VZ3
264	n/a	n/a	n/a	2200	Institutsgeb. für Leh- re und Forschung	2011	11.421	9.695	n/a	VZ1
265	n/a	n/a	n/a	2100	Hörsaalgebäude	1980	513	444	n/a	VZ1
266	n/a	n/a	n/a	2200	Institutsgeb. für Leh- re und Forschung	2000	7.867	6.464	n/a	VZ1
267	n/a	n/a	n/a	2200	Institutsgeb. für Leh- re und Forschung	1954	1.172	1.043	n/a	VZ1
268	n/a	n/a	n/a	2200	Institutsgeb. für Leh- re und Forschung	1930	1.466	1.305	n/a	VZ1
269	n/a	n/a	n/a	1300	Verwaltungsgebäu- de	1964	3.515	2.911	n/a	VZ1
270	20629	4	2062900003	2400	Fachhochschulen	2007	n/a	n/a	ja	VZ1

Anhang 2: Verbrauchsdaten zu den vertiefend geprüften Hochschulgebäuden (Auszug)

		Wärm	everbrauch	[kWh]		Stromverbrauch [kWh]						
Nr.	2006	2007	2008	2009	2010	2006	2007	2008	2009	2010		
1	604.684	529.654	573.049	599.165	735.191	144.085	140.719	136.541	139.723	145.408		
2	312.172	269.243	283.027	n/a	n/a	970.051	1.172.021	1.233.438	1.366.690	867.194		
3	515.940	490.693	500.493	n/a	n/a	161.155	170.206	182.813	n/a	n/a		
4	444.187	422.451	430.888	n/a	n/a	116.197	113.234	115.077	n/a	n/a		
5	591.493	587.736	657.458	663.108	796.101	361.249	394.317	388.105	n/a	n/a		
6	267.415	249.291	258.425	252.676	307.772	29.078	28.992	32.100	n/a	n/a		
7	218.331	194.177	179.432	181.246	203.301	38.523	34.702	32.815	n/a	n/a		
8	372.060	348.870	463.910	462.210	605.820	49.382	75.085	67.915	88.600	95.998		
9	1.016.080	881.670	1.063.390	1.254.320	1.409.160	1.852.867	1.824.020	1.862.832	1.885.416	1.884.352		
10	526.626	474.104	528.946	521.589	594.559	338.277	348.953	344.274	345.093	345.064		
11	1.599.728	1.276.055	1.515.800	1.783.352	1.908.279	2.485.567	2.387.742	2.385.649	2.432.723	2.237.129		
12	334.477	340.273	299.220	407.100	480.579	545.253	580.490	603.525	633.160	618.032		
13	260.334	139.173	183.495	n/a	n/a	275.471	261.105	191.877	183.061	169.638		
14	297.705	285.431	295.620	n/a	n/a	185.757	194.103	186.526	n/a	n/a		
15	156.298	150.894	156.175	164.898	189.671	13.021	11.017	11.744	11.915	11.494		
16	1.022.464	833.328	843.272	962.775	1.177.980	1.383.915	1.322.918	1.413.131	1.408.599	1.474.855		
17	417.764	341.152	233.899	417.824	285.710	143.403	178.570	200.430	n/a	n/a		
18	346.858	298.210	314.474	n/a	n/a	385.875	399.027	406.534	n/a	n/a		
19	932.978	926.457	1.030.049	n/a	n/a	403.538	417.242	416.790	418.810	418.672		
20	244.782	210.182	221.928	n/a	n/a	230.505	219.436	245.447	n/a	n/a		
21	507.280	434.503	459.918	n/a	n/a	163.462	182.396	332.166	n/a	n/a		
22	618.292	530.620	560.566	n/a	n/a	442.652	419.453	469.173	n/a	n/a		
23	1.708.412	1.624.810	1.657.260		2.591.700	574.179	570.286	518.172	n/a	n/a		
24	306.671	300.646	276.511	286.537	315.255	52.800	52.500	67.800	62.600	52.100		
25	226.949	195.740	205.760	n/a	n/a	204.950	202.929	183.340	n/a	n/a		
26	377.208	323.092	341.991	n/a	n/a	768.636	827.027	645.560	n/a	n/a		
27	589.004	487.138	573.292	623.548	651.898	554.137	494.178	504.154	497.468	488.933		
28	1.018.899	864.551	923.767	n/a	n/a	1.234.120	1.176.799	1.316.288	n/a	n/a		
29	190.603	182.744	189.269	n/a	n/a	118.362	123.681	118.855	n/a	n/a		
30	381.664	n/a	359.985	389.540	498.244	73.050	73.650	72.700	77.400	78.549		
31	314.181	290.327	319.044	341.309	393.172	136.363	138.444	133.206	131.005	128.058		
32	479.244	459.225	524.024	n/a	n/a	432.512	402.736	385.944	n/a	n/a		
33	189.903	181.971	207.648	n/a	n/a	83.054	88.691	97.984	n/a	n/a		
34	495.257	538.194	743.694	787.751	873.762	159.828	169.507	234.770	239.495	265.830		
35	127.628	111.524	108.363	135.935	153.396	31.420	27.760	23.020	21.520	26.640		
36	182.434	174.912	181.157	n/a	n/a	113.833	118.948	114.304	n/a	n/a		
62	723.918	883.114	878.884	n/a	n/a	336.364	359.008	288.012	n/a	n/a		
63	1.160.430	1.280.015	1.352.557	n/a	n/a	899.408	949.282	741.555	n/a	n/a		
64	1.784.240	1.583.800	1.840.000	n/a		2.195.870		1.880.211	n/a	n/a		
164	1.069.580	1.081.280	932.010		1.114.920	370.220	367.871	354.674	382.020	380.431		
165	322.000	414.410	407.580	465.400	595.250	70.515	64.266	94.788	81.302	95.333		

		Wärme	everbrauch	[kWh]			Strom	verbrauch [[kWh]	
Nr.	2006	2007	2008	2009	2010	2006	2007	2008	2009	2010
166	589.500	568.820	618.960	594.540	687.360	148.026	149.723	159.347	147.572	134.732
167	449.120	437.610	438.650	438.470	508.950	86.211	83.341	81.278	83.164	80.372
168	447.000	607.000	595.920	655.440	670.520	527.310	560.736	560.000	515.823	445.818
169	524.550	480.960	488.310	484.410	485.400	107.851	110.830	94.425	107.059	118.117
170	291.670	298.470	317.840	298.210	354.350	39.788	41.669	27.577	40.406	43.299
171	152.000	149.000	134.990	129.240	205.070	17.076	14.619	14.501	9.064	9.911
172	222.820	283.630	285.050	278.410	354.580	74.387	76.437	53.258	79.423	81.176
173	68.670	68.340	67.530	64.440	78.700	36.969	41.904	34.621	35.885	37.100
174	147.779	118.142	120.805	141.510	137.166	14.150	20.700	16.793	22.951	17.032
175	254.350	231.720	169.730	211.950	304.040	121.030	137.871	131.404	193.355	178.807
176	299.049	251.653	299.668	304.647	385.663	38.650	43.050	44.676	43.013	47.124
177	581.520	494.690	406.530	39.4720	56.7210	100.566	82.831	85.584	86.075	79.354
178	163.311	178.491	164.235	194.672	224.265	97.679	117.701	108.667	101.133	103.436
179	138.838	151.743	139.622	165.498	190.656	83.041	100.062	92.382	85.977	87.936
180	222.835	205.391	212.191	224.518	259.334	102.114	101.210	108.024	99.950	97.516
181	298.830	306.810	366.990	248.152	290.030	128.989	126.951	140.170	186.965	188.001
182	223.360	202.880	225.050	231.911	271.049	121.049	150.625	167.582	174.729	175.697
183	218.340	211.130	226.950	263.589	307.350	113.760	124.731	138.143	198.596	199.228
184	155.960	143.630	157.550	165.560	200.546	120.788	128.874	144.560	124.738	129.997
185	239.310	217.640	250.780	277.024	323.775	194.199	244.876	237.444	208.718	209.875
186	316.040	284.760	299.500	310.188	362.536	289.996	291.336	328.470	322.705	235.000
187	214.400	204.030	205.850	211.322	246.985	239.104	189.687	268.011	159.216	160.099
189	411.569	309.009	322.246	280.313	331.176	97.233	70.015	86.769	31.400	40.150
190	235.803	219.381	250.258	n/a	n/a	62.364	61.715	55.583	n/a	n/a
191	496.327	461.761	526.753	n/a	n/a	131.266	129.901	116.992	n/a	n/a
192	558.533	492.754	514.197	n/a	n/a	340.629	344.909	340.719	n/a	n/a
201	161.100	228.180	111.820	168.140	171.460	77.893	75.079	30.607	25.619	34.112
202	126.860	111.050	128.360	120.600	132.290	23.424	18.706	17.801	19.231	18.699
203	94.560	83.690	70.630	86.550	101.700	26.666	26.666	26.666	31.746	28.017
204	220.590	206.630	240.200	245.080	273.600	212.899	228.283	249.869	259.635	253.157
205	328.260	308.670	350.240	352.500	409.370	68.813	71.890	74.890	82.454	73.335
206	153.390	135.890	157.400	154.750	188.650	24.186	21.993	24.172	28.263	24.823
207	146.350	111.910	118.650	128.190	151.750	42.119	44.931	49.791	43.651	40.848
208	471.110	162.200	184.240	177.380	184.270	73.673	165.804	91.148	78.625	78.106
212	126.380	111.030	119.800	117.127	136.893	93.585	131.242	132.570	88.247	88.736
213	174.885	235.860	256.680	223.794	261.428	12.250	84.930	131.894	168.613	169.461
214	245.000	225.000	227.000	232.000	270.000	80.000	76.600	76.400	73.000	62.000
215	343.000	337.000	341.000	331.000	370.000	157.500	161.400	146.100	150.000	144.000
216	144.000	133.000	136.000	139.000	160.000	37.500	37.750	34.750	42.500	42.500
217	103.000	96.000	101.000	105.000	114.000	43.673	35.545	46.772	50.361	64.696
218	216.000	188.000	205.000	232.000	275.000	460.350	502.800	499.500	462.850	382.000
219	264.000	242.000	351.000	350.000	331.000	144.200	125.800	174.000	165.400	107.600
220	51.000	48.000	51.000	52.000	47.000	8.327	7.048	5.028	5.139	4.804
221	279.000	335.000	294.000	278.000	300.000	404.600	457.600	347.800	238.000	233.000

		Wärm	everbrauch	[kWh]		Stromverbrauch [kWh]						
Nr.	2006	2007	2008	2009	2010	2006	2007	2008	2009	2010		
222	141.000	167.000	142.000	186.000	189.000	106.920	128.040	111.360	122.280	n/a		
223	396.000	346.000	391.000	471.000	524.000	206.160	212.280	257.640	285.360	278.640		
224	403.000	416.000	385.000	405.000	420.000	172.680	170.040	187.920	173.160	159.600		
225	179.280	165.750	191.410	182.440	212.470	64.754	88.153	95.905	94.823	109.081		
226	358.260	340.340	343.640	371.570	491.565	824.035	841.416	657.093	288.928	950.654		
227	372.240	279.600	415.000	386.000	480.000	148.320	129.600	120.480	118.320	121.080		
228	192.660	185.630	199.690	183.370	215.660	226.961	228.934	224.988	229.784	240.638		
229	187.060	197.620	222.860	193.610	242.420	122.300	134.438	124.744	144.914	132.147		
230	933.510	882.690	937.710	818.480	926.630	532.308	532.308	532.308	599.987	682.454		
231	1.247.100	1.154.700	1.205.000	1.127.700	1.255.700	537.834	537.834	537.834	597.260	701.025		
232	354.740	315.250	336.360	308.450	381.670	204.300	192.100	181.600	180.000	180.000		
233	712.650	761.450	801.570	n/a	n/a	611.640	761.450	801.570	n/a	n/a		
234	175.940	171.300	199.770	180.260	219.430	39.224	29.736	30.486	20.796	15.632		
235	2.024.500	1.861.300	1.851.000	1.768.000	2.188.000	1.910.000	1.839.000	1.897.000	1.959.000	2.049.000		
236	384.500	375.770	471.000	445.000	546.000	614.104	577.088	545.172	548.960	550.648		
237	458.500	418.500	404.000	412.000	433.000	127.000	107.000	100.000	101.653	95.528		
241	373.400	363.740	384.390	390.930	469.130	234.125	248.183	256.299	264.515	252.452		
242	418.100	405.160	425.410	436.900	496.630	295.620	276.382	272.298	256.165	275.104		
243	175.135	179.790	170.480	172.280	200.720	69.858	68.366	71.350	78.011	78.886		
246	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
247	211.772	203.777	212.567	n/a	n/a	51.204	57.392	52.128	n/a	n/a		
249	24.343	39.022	71.811	78.834	85.674	9.100	70.700	57.300	66.562	75.425		
255	1.053.680	1.135.160	1.066.520	1.011.180	1.309.490	1.831.233	1.784.701	1.826.543	1.792.588	1.684.161		
259	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
260	n/a	n/a	n/a	369.245	431.777	n/a	n/a	n/a	278.200	279.884		
261	n/a	n/a	n/a	149.318	174.517	n/a	n/a	n/a	112.501	113.124		
262	200.750	188.404	166.404	167.359	339.549	51.464	39.966	35.768	34.787	32.143		
263	483.230	453.512	400.557	402.854	817.338	123.882	96.202	86.097	83.737	77.371		
264	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
265	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
266	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		
267	66.220	69.190	71.510	81.290	125.880	41.370	36.469	74.742	83.977	100.817		
268	n/a	n/a	50.000	100.000	100.000	n/a	n/a	12.123	25.301	30.687		
269	215.000	104.000	97.140	193.270	228.510	58.398	n/a	43.608	84.733	10.878		
270	n/a	n/a	2.046.208	n/a	n/a	n/a	n/a	1.574.752	n/a	n/a		

gemäß den §§ 16 ff. Energieeinsparverordnung (EnEV)

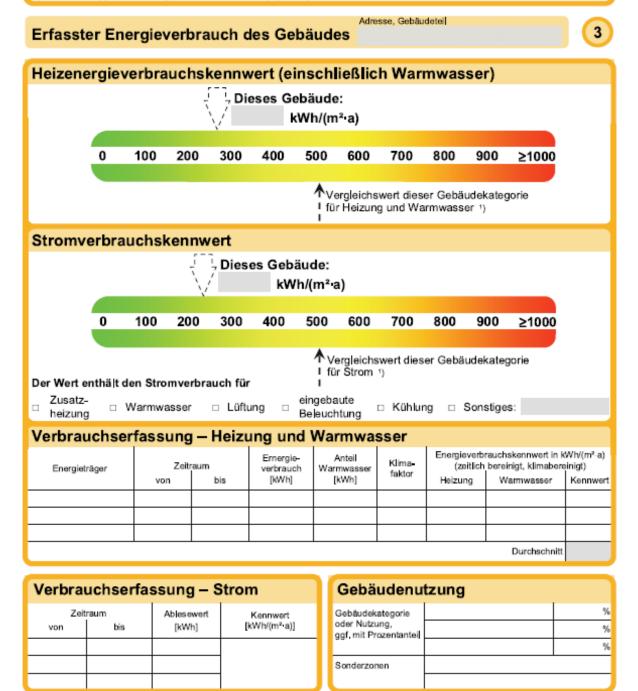
Gültig bis:			1
Gebäude			
Hauptnutzung / Gebäudekategorie			
Adresse			
Gebäudeteil			
Baujahr Gebäude			Cabindafata
Baujahr Wärmeerzeuger 1)			Gebäudefoto (freiwillig)
Baujahr Klimaanlage 1)			
Nettogrundfläche 2)			
Erneuerbare Energien			
Lüftung			
Anlass der Ausstellung des Energieausweises	□ Neubau □ Vermietung / Verkauf	☐ Modernisierung (Änderung / Erweiterung)	□ Aushang b. öff. Gebäuden □ Sonstiges (freiwillig)
Die energetische Qualität ein	es Gebäudes kann durch		pedarfs unter standardisierten den. Als Bezugsfläche dient
sind auf Seite 2 dargeste ist Pflicht bei Neubauten	∎t. Zusätzliche Information und bestimmten Modernisi	en zum Verbrauch sind freiwi	darfs erstellt. Die Ergebnisse lig. Diese Art der Ausstellung ergleichswerte sind die Anfor- rungen – siehe Seite 4).
		Auswertungen des Energieve te beruhen auf statistischen A	erbrauchs erstellt. Die Ergeb- uswertungen.
Datenerhebung Bedarf/Verbr	auch durch	□ Eigentümer □ Aus	steller
□ Dem Energieausweis sind	d zusätzliche Informationer	zur energetischen Qualität be	eigefügt (freiwillige Angabe).
	ediglich der Information. oben bezeichneten Gebäu	Die Angaben im Energieaus deteil, Der Energieausweis ist	weis beziehen sich auf das lediglich dafür gedacht, einen
Aussteller		Datum	Unterschrift des Ausstellers

¹⁾ Mehrfachangaben möglich 2) Nettogrundfläche ist im Sinne der EnEV ausschließlich der beheizte / gekühlte Teil der Nettogrundfläche

Adresse, Gebäudeteil

gemäß den §§ 16 ff. Energieeinsparverordnung (EnEV)

2 Berechneter Energiebedarf des Gebäudes Primärenergiebedarf "Gesamtenergieeffizienz" CO₂-Emissionen 1) kg/(m²-a) Dieses Gebäude: kWh/(m²-a) 400 600 700 800 900 ≥1000 0 100 200 300 500 EnEV-Anforderungswert EnEV-Anforderungswert Neubau (Vergleichswert) modernisierter Altbau (Vergleichswert) Anforderungen gemäß EnEV 2) Für Energiebedarfsberechnungen verwendetes Verfahren Primärenergiebedarf Verfahren nach Anlage 2 Nr. 2 EnEV lst-Wert kWh/(m²-a) Anforderungswert kWh/(m²-a) Verfahren nach Anlage 2 Nr. 3 EnEV ("Ein-Zonen-Modell") Mittlere Wärmedurchgangskoeffizienten eingehalten □ Vereinfachungen nach § 9 Abs. 2 EnEV Sommerlicher Wärmeschutz (bei Neubau) eingehalten Endenergiebedarf Jährlicher Endenergiebedarf in kWh/(m2-a) für Eingebaute Kühlung einschl. Gebäude Energieträger Heizung Warmwasser Lüftung 4) Beleuchtung Befeuchtung insgesamt Aufteilung Energiebedarf Eingebaute Kühlung einschl. Gebäude [kWh/(m²-a)] Heizung Warmwasser Lüftung 4) Beleuchtung Befeuchtung insgesamt Nutzenergie Endenergie Primärenergie Gebäudezonen Ersatzmaßnahmen 3) Zone Fläche [m²] Anteil [%] Anforderungen nach § 7 Nr. 2 EEWärmeG Die um 15 % verschärften Anforderungswerte sind eingehalten, Anforderungen nach § 7 Nr. 2 i, V, m. § 8 EEWärmeG 3 Die Anforderungswerte der EnEV sind um % verschärft. 4 Primärenergiebedarf 5 Verschärfter Anforderungswert kWh/(m²-a). 6 Wärmeschutzanforderungen weitere Zonen in Anlage Die verschärften Anforderungswerte sind eingehalten,


Erläuterungen zum Berechnungsverfahren

Die Energieeinsparverordnung lässt für die Berechnung des Energiebedarfs in vielen Fällen neben dem Berechnungsverfahren alternative Vereinfachungen zu, die im Einzelfall zu unterschiedlichen Ergebnissen führen können. Insbesondere wegen standardisierter Randbedingungen erlauben die angegebenen Werte keine Rückschlüsse auf den tatsächlichen Energieverbrauch. Die ausgewiesenen Bedarfswerte sind spezifische Werte nach der EnEV pro Quadratmeter beheizte / gekühlte Nettogrundfläche.

²⁾ bei Neubau sowie bei Modernisierung im Falle des § 16 Abs, 1 Satz 2 EnEV

³⁾ nur bei Neubau im Falle der Anwendung von § 7 Nr. 2 Emeuerbare-Energien-Wärmegesetz

gemäß den §§ 16 ff. Energieeinsparverordnung (EnEV)

Erläuterungen zum Verfahren

Das Verfahren zur Ermittlung von Energieverbrauchskennwerten ist durch die Energieeinsparverordnung vorgegeben. Die Werte sind spezifische Werte pro Quadratmeter beheizte / gekühlte Nettogrundfläche. Der tatsächliche Verbrauch eines Gebäudes weicht insbesondere wegen des Witterungseinflusses und sich ändernden Nutzerverhaltens von den angegebenen Kennwerten ab.

¹⁾ veröffentlicht im Bundesanzeiger / Internet durch das Bundesministerium für Verkehr, Bau und Stadtentwicklung und das Bundesministerium für Wirtschaft und Technologie

gemäß den §§ 16 ff. Energieeinsparverordnung (EnEV)

Erläuterungen

4

Energiebedarf – Seite 2

Der Energiebedarf wird in diesem Energieausweis durch den Jahres-Primärenergiebedarf und den Endenergiebedarf für die Anteile Heizung, Warmwasser, eingebaute Beleuchtung, Lüftung und Kühlung dargestellt. Diese Angaben werden rechnerisch ermittelt. Die angegebenen Werte werden auf der Grundlage der Bauunterlagen bzw. gebäudebezogener Daten und unter Annahme von standardisierten Randbedingungen (z. B. standardisierte Klimadaten, definiertes Nutzerverhalten, standardisierte Innentemperatur und innere Wärmegewinne usw.) berechnet. So lässt sich die energetische Qualität des Gebäudes unabhängig vom Nutzerverhalten und der Wetterlage beurteilen, Insbesondere wegen standardisierter Randbedingungen erlauben die angegebenen Werte keine Rückschlüsse auf den tatsächlichen Energieverbrauch.

Primärenergiebedarf - Seite 2

Der Primärenergiebedarf bildet die Gesamtenergieeffizienz eines Gebäudes ab, Er berücksichtigt neben der Endenergie auch die so genannte "Vorkette" (Erkundung, Gewinnung, Verteilung, Umwandlung) der jeweils eingesetzten Energieträger (z. B. Heizöl, Gas, Strom, erneuerbare Energien etc.). Kleine Werte signalisieren einen geringen Bedarf und damit eine hohe Energieeffizienz und eine die Ressourcen und die Umwelt schonende Energienutzung. Die angegebenen Vergleichswerte geben für das Gebäude die Anforderungen der Energieeinsparverordnung an, die zum Zeitpunkt der Erstellung des Energieausweises galt. Sie sind im Falle eines Neubaus oder der Modernisierung des Gebäudes nach § 9 Abs. 1 Satz 2 EnEV einzuhalten. Bei Bestandsgebäuden dienen sie der Orientierung hinsichtlich der energetischen Qualität des Gebäudes. Zusätzlich können die mit dem Energiebedarf verbundenen CO₂-Emissionen des Gebäudes freiwillig angegeben werden.

Der Skalenendwert des Bandtachometers beträgt, auf die Zehnerstelle gerundet, das Dreifache des Vergleichswerts "EnEV Anforderungswert modernisierter Altbau" (140 % des "EnEV Anforderungswerts Neubau").

Wärmeschutz - Seite 2

Die Energieeinsparverordnung stellt bei Neubauten und bestimmten baulichen Änderungen auch Anforderungen an die energetische Qualität aller wärmeübertragenden Umfassungsflächen (Außenwände, Decken, Fenster etc.) sowie bei Neubauten an den sommerlichen Wärmeschutz (Schutz vor Überhitzung) eines Gebäudes.

Endenergiebedarf – Seite 2

Der Endenergiebedarf gibt die nach technischen Regeln berechnete, jährlich benötigte Energiemenge für Heizung, Warmwasser, eingebaute Beleuchtung, Lüftung und Kühlung an. Er wird unter Standardklima und Standardnutzungsbedingungen errechnet und ist ein Maß für die Energieeffizienz eines Gebäudes und seiner Anlagentechnik. Der Endenergiebedarf ist die Energiemenge, die dem Gebäude bei standardisierten Bedingungen unter Berücksichtigung der Energieverluste zugeführt werden muss, damit die standardisierte Innentemperatur, der Warmwasserbedarf, die notwendige Lüftung und eingebaute Beleuchtung sichergestellt werden können. Kleine Werte signalisieren einen geringen Bedarf und damit eine hohe Energieeffizienz.

Heizenergie- und Stromverbrauchskennwert (Energieverbrauchskennwerte) - Seite 3

Der Heizenergieverbrauchskennwert (einschließlich Warmwasser) wird für das Gebäude auf der Basis der Erfassung des Verbrauchs ermittelt. Das Verfahren zur Ermittlung von Energieverbrauchskennwerten ist durch die
Energieeinsparverordnung vorgegeben. Die Werte sind spezifische Werte pro Quadratmeter Nettogrundfläche nach
der Energieeinsparverordnung. Über Klimafaktoren wird der erfasste Energieverbrauch hinsichtlich der örtlichen
Wetterdaten auf ein standardisiertes Klima für Deutschland umgerechnet. Der ausgewiesene Stromverbrauchskennwert wird für das Gebäude auf der Basis der Erfassung des Verbrauchs oder der entsprechenden Abrechnung
ermittelt. Die Energieverbrauchskennwerte geben Hinweise auf die energetische Qualität des Gebäudes. Kleine
Werte signalisieren einen geringen Verbrauch, Ein Rückschluss auf den künftig zu erwartenden Verbrauch ist
jedoch nicht möglich, Der tatsächliche Verbrauch einer Nutzungseinheit oder eines Gebäudes weicht insbesondere
wegen des Witterungseinflusses und sich ändernden Nutzerverhaltens oder sich ändernder Nutzungen vom
angegebenen Energieverbrauchskennwert ab.

Die Vergleichswerte ergeben sich durch die Beurteilung gleichartiger Gebäude. Kleinere Verbrauchswerte als der Vergleichswert signalisieren eine gute energetische Qualität im Vergleich zum Gebäudebestand dieses Gebäudetyps. Die Vergleichswerte werden durch das Bundesministerium für Verkehr, Bau und Stadtentwicklung im Einvernehmen mit dem Bundesministerium für Wirtschaft und Technologie bekannt gegeben.

Die Skalenendwerte der Bandtachometer betragen, auf die Zehnerstelle gerundet, das Doppelte des jeweiligen Vergleichswerts.

Anhang 4: Flächenumrechnungsfaktoren zur Berechnung der Energiebezugsfläche

Ziffer nach	Gebäudekategorie	Um	rechnui f _{Fläche}	ngsfakte für ⁶	oren
BWZK	o de la companya de	A _{HNF}	A _{NF}	A _{NGF}	$\mathbf{A}_{\mathrm{BGF}}$
1100	Parlamentsgebäude	1,97	1,54	1,00	0,85
1200	Gerichtsgebäude	1,68	1,41	1,00	0,83
1300	Verwaltungsgebäude	1,71	1,40	1,00	0,85
1312	Ämtergebäude	1,64	1,38	1,00	0,84
1315	Finanzämter	1,62	1,41	1,00	0,85
1320	Verwaltungsgebäude mit höherer technischer Ausstattung ⁷	1,75	1,33	1,00	0,86
1340	Polizeidienstgebäude	1,78	1,38	1,00	0,84
1342	Polizeiinspektionen, Kommissariate, Kriminalämter, Reviere	1,76	1,40	1,00	0,83
1350	Rechenzentren	1,73	1,54	1,00	0,88
2000	Gebäude für wissenschaftliche Lehre	1,74	1,56	1,00	0,88
2100	Hörsaalgebäude	1,91	1,64	1,00	0,88
2200	Institutsgebäude für Lehre und Forschung	1,70	1,54	1,00	0,89
2210	Institutsgebäude I ⁸	1,70	1,50	1,00	0,88
2220	Institutsgebäude II ⁸	1,66	1,49	1,00	0,88
2230	Institutsgebäude III ⁸	1,63	1,49	1,00	0,90

Indizes: HNF = Hauptnutzfläche, NF = Nutzfläche, NGF = Nettogrundfläche, BGF = Bruttogrundfläche

(Fortsetzung nächste Seite)

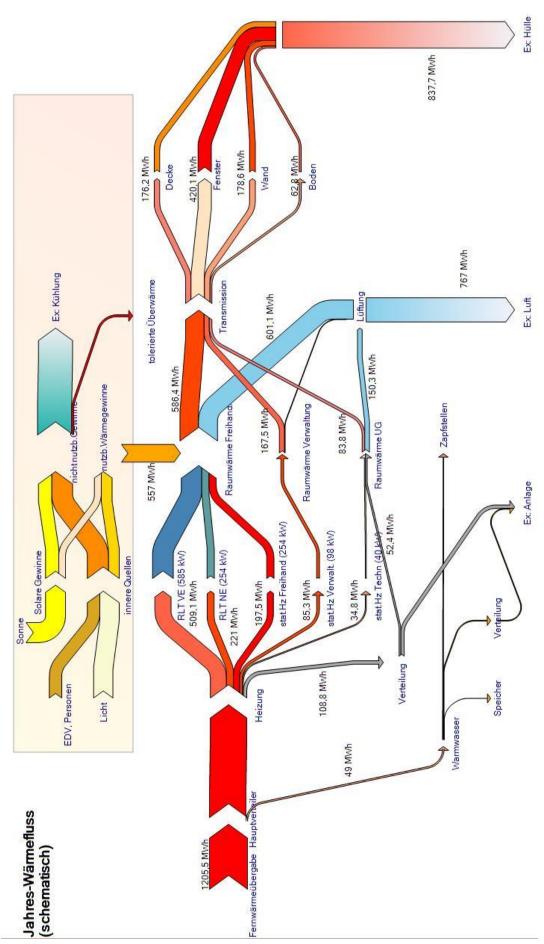
höhere technische Ausstattung: Anteil der Kosten für technische Anlagen gegenüber Baukonstruktion (Kostengruppe 300 der DIN 276 – Kosten im Hochbau) > 25%

Einstufung der Institutsgebäude gemäß Rahmenplan für den Hochschulbau

Ziffer nach	Gebäudekategorie	Um	rechnui f _{Fläche}		oren
BWZK	_	$\mathbf{A}_{\mathrm{HNF}}$	A_{NF}	$\mathbf{A}_{\mathbf{NGF}}$	$\mathbf{A}_{\mathrm{BGF}}$
2240	Institutsgebäude IV ⁸	1,67	1,53	1,00	0,88
2250	Institutsgebäude V ⁸	1,94	1,75	1,00	0,89
2300	Institutsgebäude für Forschung und Untersuchung	1,76	1,61	1,00	0,87
2400	Fachhochschulen	1,76	1,61	1,00	0,87
3000	Gebäude des Gesundheitswesens	1,78	1,53	1,00	0,86
3200	Krankenhäuser und Unikliniken für Akutkranke	2,01	1,72	1,00	0,86
4000	Schulen	1,56	1,36	1,00	0,89
4100	Allgemeinbildende Schulen	1,54	1,40	1,00	0,90
4200	Berufsbildende Schulen	1,55	1,39	1,00	0,90
4300	Sonderschulen	1,56	1,39	1,00	0,88
4400	Kindertagesstätten	1,60	1,30	1,00	0,86
4500	Weiterbildungseinrichtungen	1,49	1,32	1,00	0,88
5000	Sportbauten	1,42	1,19	1,00	0,91
5100	Hallen (ohne Schwimmhallen)	1,40	1,17	1,00	0,91
5200	Schwimmhallen	1,72	1,40	1,00	0,88
6000	Gemeinschaftsstätten	1,58	1,32	1,00	0,84
6300	Gemeinschaftsunterkünfte	1,69	1,36	1,00	0,85
6400	Betreuungseinrichtungen	1,53	1,29	1,00	0,85
6530	Mensen	1,64	1,46	1,00	0,91
7000	Gebäude für Produktion, Werkstätten, Lagergebäude	1,41	1,16	1,00	0,89
7100	Land- und forstwirtschaftliche Produktionsstätten	1,20	1,14	1,00	0,90
7300	Betriebs- und Werkstätten	1,28	1,16	1,00	0,91
7500	Gebäude für Lagerung	1,11	1,06	1,00	0,89
7700	Gebäude für öffentliche Bereitschaftsdienste	1,53	1,14	1,00	0,87
7710	Straßenmeistereien	1,44	1,14	1,00	0,86
7760	Feuerwehren	1,48	1,15	1,00	0,86
8000	Bauwerke für technische Zwecke	1,95	1,24	1,00	0,85
9100	Gebäude für kulturelle und musische Zwecke	1,46	1,28	1,00	0,88
9120	Ausstellungsgebäude	1,46	1,34	1,00	0,87
9130	Bibliotheksgebäude	1,42	1,33	1,00	0,90
9150	Gemeinschaftshäuser	1,47	1,25	1,00	0,88
9600	Justizvollzugsanstalten	1,66	1,45	1,00	0,84

Anhang 5: Mittelwerte EnEV 2007 und Vergleichswerte EnEV 2009 für den Heizenergieverbrauchskennwert und den Stromverbrauchskennwert für Gebäude, die nach dem Bauwerkszuordnungskatalog kategorisiert sind

Ziffer		Gebäude- größe (Netto-	Mittel = Vergleid nach Enf	chswerte	Vergleich nach EnE	
nach BWZK	Gebäudekategorie	grundflä- che)	Heizung und Warmwasser	Strom	Heizung und Warmwasser	Strom
		[m ²]	[kWh/(m	² NGF. a)]	[kWh/(m ²	NGF .a)]
1	2	3	4	5	6	7
1100	Parlamentsgebäude	beliebig	100	55	70	40
1200	Gariahtaaahäuda	≤ 3.500	125	25	90	20
1200	Gerichtsgebäude	> 3.500	100	35	70	25
	Verwaltungsgebäude,	≤ 3.500	115	30	80	20
	normale technische Ausstattung (ohne BWZK Nr. 1311, 1320, 1340 und 1350)	> 3.500	120	45	85	30


(Fortsetzung nächste Seite)

		Gebäude-	Mittel = Verglei		Vergleich	
Ziffer	Califord about	größe (Netto-	nach Enl		nach EnE	V 2009
nach BWZK	Gebäudekategorie	grundflä- che)	Heizung und Warmwasser	Strom	Heizung und Warmwasser	Strom
		$[\mathbf{m}^2]$	[kWh/(m		[kWh/(m ²	_{NGF} .a)]
1	2	3	4	5	6	7
1311	Ministerien	beliebig	100	45	70	30
	Verwaltungsgebäude mit höherer techn. Ausstat- tung ⁹	beliebig	120	60	85	40
	Polizeidienstgebäude	beliebig	125	40	90	30
1350	Rechenzentren	beliebig	125	220	90	155
2100	Hörsaalgebäude	beliebig	115	55	90	40
2200	Institutsgebäude für Lehre und Forschung (ohne BWZK Nr. 2210 bis 2250)	beliebig	150	95	105	65
2210	Institutsgebäude I ¹⁰	≤ 3.500	125	35	90	25
		> 3.500	120	50	85	35
2220	Institutsgebäude II ¹⁰	beliebig	160	75	110	55
	Institutsgebäude III ¹⁰	beliebig	135	95	95	65
2240	Institutsgebäude IV ¹⁰	beliebig	195	110	135	75
2250	Institutsgebäude V 10	beliebig	200	135	140	95
	Institutsgebäude für Forschung und Untersu- chung	beliebig	190	90	135	65
2400	Fachhochschulen	beliebig	115	40	80	30
3000	Gebäude des Gesund- heitswesens (ohne BWZK Nr. 3200)	beliebig	190	70	135	50
3200	Krankenhäuser und Uni- kliniken für Akutkranke	beliebig	360	180	250	125
4100	Allgemeinbildende Schu-	≤ 3.500	150	15	105	10
4100	len	> 3.500	125	15	90	10
4200	Berufsbildende Schulen	beliebig	115	25	80	20
4300	Sonderschulen	beliebig	150	20	105	15
4400	Kindertagesstätten	beliebig	160	25	110	20
4500	Weiterbildungseinrichtun- gen	beliebig	130	30	90	20

höhere technische Ausstattung: Anteil der Kosten für technische Anlagen gegenüber Baukonstruktion (Kostengruppe 300 der DIN 276 – Kosten im Hochbau) > 25%
 Einstufung der Institutsgebäude gemäß Rahmenplan für den Hochschulbau

		Gebäude-	Mittel		Vergleich	swerte
Ziffer		größe (Netto-	= Verglei nach Enl		nach EnE	V 2009
nach BWZK	Gebäudekategorie	grundflä- che)	Heizung und Warmwasser	Strom	Heizung und Warmwasser	Strom
		[m ²]	[kWh/(m		[kWh/(m²	1
1	2	3	4	5	6	7
5000	Sportbauten (ohne BWZK Nr. 5100, 5200 und 5300) und Sondersportanlagen (Ke- gelbahnen, Schießanlagen, Reithallen, Eissporthallen, Tennishallen)	beliebig	170	40	120	30
5100	Hallen (ohne Schwimm- hallen)	beliebig	155	35	110	25
5200	Schwimmhallen	beliebig	775	220	425	155
5300	Gebäude für Sportplatz- und Freibadeanlagen (Umkleidegebäude, Tri- bünengebäude, Sporthei- me, Platzwartgebäude, Sportbetriebsgebäude)	beliebig	195	40	135	30
6300 bis 6600	Gemeinschaftsunterkünfte, Betreuungseinrichtungen, Verpflegungseinrichtun- gen, Beherbergungsstätten	beliebig	150	30	105	20
	Gebäude für Produktion,	≤ 3.500	160	30	110	20
7000	Werkstätten, Lagergebäu- de (ohne BWZK Nr. 7700)	> 3.500	160	90	110	65
7700	Gebäude für öffentliche Bereitschaftsdienste	beliebig	145	25	100	20
8000	Bauwerke für technische Zwecke	beliebig	155	60	110	40
9100	Gebäude für kulturelle und musische Zwecke (ohne BWZK Nr. 9120 bis 9150)	beliebig	90	30	65	20
9120	Ausstellungsgebäude	beliebig	110	60	75	40
9130	Bibliotheksgebäude	beliebig	80	55	55	40
9140	Veranstaltungsgebäude	beliebig	155	60	110	40
9150	Gemeinschaftshäuser	beliebig	195	45	135	30
9600	Justizvollzugsanstalten	beliebig	260	60	180	40

Anhang 6: Sankey-Diagramme für Wärme Quelle: ENVISYS (2013).

Anhang 7: Übersicht vorgeschlagener Einzelmaßnahmen und deren Einordnung in die vier Maßnahmenpakete; Quelle: ENVISYS (2013).

Ma	Maßnahmevorschläge	kalk	kalk.Kosten/kWh	0,18	0,093 €/kWh	€/kWh		tho gitsitis	uəlqojo	nplett		
			Kosten	Kosten Einsparung		Amortisation						
	Handlungsfeld	Maßnahme	€	Et-kWh	Wä-kWh	stat.	dyn.	V1 V2	۸3 ۷	V4 E	Bemerkungen Ensparung	Bemerkungen Kostenansatz
	1 Betriebszeiten	Morgentliche Schaltung w g. Reinigung	0	50.000		0,0		×		-	100 kW x 2 h x 250 d	
	2 Betriebszeiten (alt.Option)	manuelle Schaltbarkeit und Nutzereinw eisung	2.500	50.000		0,3		×	×	×	dto.	GLT-Programmier ung
1	3 Regale vor Glasfassaden, Verk.fl.	Tageslichtsteuerung	2.000	6.000		1,9		×	×	×	64 Regalmeter, 90% TL	Installationen
1	4 Regalbeleuchtung	präsenzgesteuerte Lichtdirmung	680.000	213.000		17,7	20,4			×		detaillierte Ermittlung nach Angebot
Li	5 Regalbeleuchtung (alt.Option)	präsenzgesteuerte Teilabschaltung	120.000	90.000		7,4			×	I		Ableitung aus Angebot
ich	6 Lichtbäume	Voreinstellung; Bestückung	4.000	4.000		5,6	6,0	×	×	×		
ıt	7 Lichtbäume	Schaltbarkeit	4.000	4.000		5,6	6,0		×	×		
	8 Leuchtmittel Magazin	T8-36W durch T521W, dimmbar, EVG tauschen	25.000	8.000		17,4	19,9			×		185,-/Leuchte
	9 Betriebsw eise Magazin	Zeitsteuerung	200	1.000		2,8	2,9	×	X	×		K. Installationsaufwand
	10 Tageslicht Mediothek+Lesesaal	Lichtlenkung	5.000	1.000		27,8	34,0			×		Installation
	11 innere Verschattungselemente	manuelle Schaltbarkeit und Nutzereinw eisung	200	1.000		2,8		×	×			
	1 RLT 1.1-1.4 (1. Stufe)	man. Verringerung des Außenluftvolumenstroms(1.)	0	154.000	180.000	0,0		×		I		
	1a RLT 1.1-1.4 (2. Stufe bzw. alt.Option)	man. Verringerung des Außenluftvolumenstroms (2.)	0	256.000	300.000	0,0		×				
R	2 RLT 1.1-1.4 (Ziel)	Variabler Volumenstrom, Bedarfssteuerung: CO2-gefü	12.000	359.000	422.000	0,1	0,1		×	×		500,- x 15 + 15 x 300
aur	3 große Ventiatoren	Austausch durch Freiläufer	72.000	76.950	-26.163	6,3	6,8		×	×	15% Verbesserung; derzeitiger Vol.Str.	. 9.000/Vent. mit Umbau (o.FU)
nlı	3a kleine Ventilatoren	EC-gesteuerte Ventilatoren	16.000	13.050	-4.437	8,3	9,0		×	×	5% Verbesserung; derzeitiger Vol.Str.	. 2000/Vent. mit Umbau
ıftt	4 Betriebsw eise	Überarbeitung von Schaltungen und Schemen	10.000	2.000	5.000	12,1	13,5	×	×	×		Planungskosten 10-15 Tagew erke
ecł	5 RLT 2 Magazin VE	Reparatur des defekten Ventils + Umluftnutzung	500	0	71.400	0,1	0,1	×	×	×	8,5 kW konstant ganzjährig	ist im Rahmen der Wartung schon g.
nni	6 RLT 2 Magazin VE	heiz-/kühllastabhängige Steuerung Außenluft/Umluftvo	0	0				×	×	×		im Rahmen der GLT hausintern
k	7 Filter	Verzicht auf 2.Filterstufe, wo Direktantriebe entfallen	500	5.000	0	9,0	9,0		×	×		Um/Ausbau, geringere Wartungskosten
	8 Wärmeübertrager	L/L-Gegenstrommodelle; ggf. neue GSWT								×	10-30% erscheinen möglich; Sorptionsrad; erfordert umfassende Planung	rad; erfordert umfassende Planung
	9 Energiemanagement	Wärmemengenzähler an allen Vor- und Nacherhitzern	1.200	0	0			×	×	×		ca. 8 WMZ
	1 Dach	Dach sanieren, U-Wert-Verbesserung	263.200	0	20.000	9'99	87,2	×	×	×		nur energetische Kosten (Foamglass)
	2 Hintereingang	Glasscheibe am Hintereingang	250	0	200	13,4	15,1	×	×	×		Gew ährleistung?
	3 Regelung	Funktionstüchtigkeit von Thermostaten und Reglern	0	0	0			×	×	×	nicht ermittelt, Fehlerquote unbekannt)	15/fehlerhaftes Ventil
	4 Heizungspumpen	Effizienzpumpen einsetzen u. dimensionieren	10.000	7.884	1.500	6,4	6,9	×	×	×		1000/Pumpe m.Einbau 10x
٧	5 Regelung	Hydraulischer Abgleich	4.000	1.000	1.500	12,5	14,0	×	×	×		Planungskosten 4-6 Tagew erke
Vär	6 Heizkreis	Heizkreis für Luftschleier	5.000	-500	1.500	101,0				×		$50m \times 50$; Pumpe $\times 500$; Einbind.
me	7 Windfang	Windfanggeometrie verändern	4.000	0	0	0,0				×		können stark variieren je nach Lösung
! ,	8 Hydraulik	Hydraulische Schaltung zur Verhinderung d.Taktung	0	0	1	0,0		×	×	×	nicht ermittelt, Effekt unbekannt	
1	9 Hydraulik	Senkung der Anschlussleistung und WT-Leistung	0	0	0			×	×	×	nicht ermittelt, Verträge unbekannt	
	10 BHKW	Einbau eines BHKW - falls rechtlich zulässig								7	25kW_el:76 MWh el/137 MWh Wärme	2000/kW_el=>50000
	11 Energiemanagement	Wärmemengenzähler überprüfen	0	0	0			×	×	×		
	12 Energiemanagement	Weitere Wärmemengenzähler installieren	5.000	0	0			×	×	×		10 Stk. x 500,- incl. Einbau
	1 Freie Kühlung	Freikühlung: Einsatzgrenze von 5 auf 7°C erhöhen	0	5.000	0			×	×	×		
	2 Kaltwasserkreispumpen	Effizienzpumpen einsetzen u. dimensionieren	6.000	1.577	1.500	14,2	16,0	×	×	×		s.Heizkreispumpen 6x
	3 Eisspeicher	Eisspeicher nur im Sommer nutzen	0	5.000	0			×	×	×		
	4 Eisspeicher	Dämmung verbessern (Einhausen, Eingraben)	2.000	250	0	44,4	61,4			X	10cm PU auf doppeln	5€(/cm*m)
Kä	5 Kältemaschine	Umstellung auf Sorption	700.000	0	0					×	4000 €/kWNutzkälte 175 kW	4000 €/kWNutzkälte 175 kW (ab 1000 mgl)
lte	6 Kältemaschine	Nutzung thermischer Solarenergie	148.000	50.000	0	16,4	18,8			×		200m² Kollektor (100,-); 8000 I Puffer (1,-);
	7 Kältemaschine	Nutzung der Fernw ärme	10.000	212.000	-662.500	-0,4	-0,4			×	Annahme COP 0,6 (bis 0,75 mgl)	Installationen zur Einbindung
	8 Kühldecken	Dämmung der Kühldecken	1.500	0	0			×	×	×		Handw erkerleistung
	9 Energiemanagement	Erfassen u. Sammeln von Temperturen an den KM	0	0	0			×	×	×		
	9a Energiemanagement	Erfassen u. Sammeln v. Temperaturen Eisspeicher AU	AU und AB,	0	0			×	×	×		
	1 PV-A nlade	ZO kWneak-Anlane	127 500	20 000	C	101			×	ω >	85 kWpeak Anlage mgl. (ggf. w eniger w g. thermischer Solaranlage)	1500/KWreak
Anmarking.	v - A liage	interior constitution of the second contract	on oder thermical control of the con	oob ootrioh	o Kaltoor		1		4	_	g. tremporer containage)	1000 hvy pean

Quellenverzeichnis

- AMEV (Arbeitskreis Maschinen- und Elektrotechnik staatlicher und kommunaler Verwaltungen (2010), Hinweise zum Energiemanagement in öffentlichen Gebäuden, Ifd. Nr. 104, Berlin, 2010.
- Bauministerkonferenz (2009), Konferenz der für Städtebau, Bau- und Wohnungswesen zuständigen Minister und Senatoren der Länder (ARGEBAU), Ausschuss für Staatlichen Hochbau, Fachkommission Bau- und Kostenplanung, Projektgruppe "Verbesserung der Energieeffizienz im Bereich der Landeshochbauten" Schlussbericht, Berlin, Juni 2009.
- Bauministerkonferenz (2010), Konferenz der für Städtebau, Bau- und Wohnungswesen zuständigen Minister und Senatoren der Länder (ARGEBAU), Ausschuss für Staatlichen Hochbau, Fachkommission Bau- und Kostenplanung, Netzwerk Kostenplanung, Bauwerkszuordnungskatalog, Berlin, Dezember 2010.
- BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (2009a), Bekanntmachung der Regeln für Energieverbrauchswerte und der Vergleichswerte im Nichtwohngebäudebestand, Berlin, 30. Juli 2009.
- BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (2009b), Benchmarks für die Energieeffizienz von Nichtwohngebäuden Vergleichswerte für Energieausweise, BBSR-Online-Publikation Nr. 9/2009, Berlin, März 2009.
- BMVBS (Bundesministerium für Verkehr, Bau und Stadtentwicklung) (2007), Bekanntmachung der Regeln für Energieverbrauchswerte und der Vergleichswerte im Nichtwohngebäudebestand, Berlin, 26. Juli 2007.
- **Bogenstätter Ulrich (2007)**, Bauwerkszuordnungskatalog Synopse, ifBOR BZK 2007-10, Nürtingen , 19. Oktober 2007.
- **Deutscher Städtetag (2007),** Arbeitskreis Energieeinsparung, Energieverbrauchsausweise für öffentliche Gebäude, Köln, Juni 2007.
- **EnEV (2009),** Energieeinsparverordnung für Gebäude Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden, mit letzer Änderung vom 1. Oktober 2009.
- **ENVISYS GmbH & Co. KG (2013),** Bericht zur energetischen Feinanalyse des Objektes Universitätsbibliothek Erfurt, im Auftrag des Freistaates Thüringen, vertreten durch das TMBLV, vorgelegt am 27.2.2013.
- **IWU (Institut Wohnen und Umwelt) (2010),** Energiemanagement im Hessischen Immobilienmanagement, Darmstadt, 10. Dezember 2010.
- **Lichtmeß Markus (2010),** Vereinfachungen für die energetische Bewertung von Gebäuden, Dissertation, Bergische Universität Wuppertal, September 2010.
- **Lindner Mathias (2006),** Der schnellste Weg zu aussagekräftigen Energieausweisen im Bestand, Abteilung Energiemanagement der Stadt Frankfurt a.M., 12. Deutscher Fachkongress der kommunalen Energiebeauftragten, Nürnberg, 12./13. März 2007.
- Muhmann, Christian (2009): Energiemanagement in öffentlichen Gebäuden, Heidelberg, 2009.
- Schäfer Henry, Lützkendorf Thomas et al. (2010), ImmoWert Integration von Nachhaltigkeitsaspekten in die Wertermittlung und Risikobeurteilung von Einzelimmobilien und Gebäudebeständen, Stuttgart/ Karlsruhe, März 2010.

- **Stadt Frankfurt a.M. (2010),** Excel-Programm zur Erstellung von Energieverbrauchsausweisen für öffentliche Gebäude, Hochbauamt Energiemanagement, Version 3.18 vom 31. August 2011.
- THÜLIMA (2011), Energiebericht 2010, Erfurt.
- **TMBLV (2011),** Richtlinien für die Durchführung von Bauaufgaben des Freistaats Thüringen (RLBau), Ausgabe 2011.
- **VDI 3807 Blatt 1 (2007),** VDI-Richtlinie, Energie- und Wasserverbrauchskennwerte für Gebäude, Düsseldorf, März 2007.
- **VDI 3807 Blatt 4 (2008),** VDI-Richtlinie, Energie- und Wasserverbrauchskennwerte für Gebäude Teilkennwerte elektrische Energie, August 2008.